精英家教网 > 初中数学 > 题目详情
如图,直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2﹣14x+4(AB+2)=0的两个根(OB>OA),P是直线l上A、B两点之间的一动点(不与A、B重合),PQ∥OB交OA于点Q
【小题1】求tan∠BAO的值
【小题2】若SPAQ=S四边形OQPB时,请确定点P在AB上的位置,并求出线段PQ的长;
【小题3】当点P在线段AB上运动时,在y轴上是否存在点M,使△MPQ为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

【小题1】由已知可得
又∵OA2+OB2=AB2
∴(OA+OB)2﹣2OA•OB=AB2
即142﹣8(AB+2)=AB2
∴AB2+8AB﹣180=0,
∴AB=10或AB=﹣18(不合题意,舍去),
∴AB=10,
∴x2﹣14x+48=0,
解得x1=6,x2=8,
∵OB>OA,∴OA=6,OB=8,
∴tan∠BAO=. (5分)
【小题2】∵SPAQ=S四边形OQPB
∴SPAQ=SAOB
∵PQ∥BO,
∴△PQA∽△BOA,

.∵AB=10,
∴AP=5,
又∵tan∠BAO=
∴sin∠BAO=
∴PQ=PA•sin∠BAO=.(5分)
【小题3】存在,
M点的坐标分别为M1(0,0)、M2(0,)、M3(0,).(2分)解析:
(1)根据勾股定理得出OA2+OB2=AB2,求出AB.然后把AB代入等式求出x的值继而求出OA,OB的值即可;
(2)已知SPAQ=S四边形OQPB,证明△PQA∽△BOA利用线段比求出AB,AP的值.知道PQ=PA•sin∠BAO,即可求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线m与x轴、y轴分别交于点B,A,且A,B两点的坐标分别为A(0,3),B(4,0).
(1)请求出直线m的函数解析式;
(2)在x轴上是否存在这样的点C,使△ABC为等腰三角形?请求出点C的坐标(不需要具体过程),并在坐标系中标出点C的大致位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点.OA、OB的长度分别为a和b,且满足a2-2ab+b2=0.
(1)判断△AOB的形状.
(2)如图②,正比例函数y=kx(k<0)的图象与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的长.
(3)如图③,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD、PO,试问:线段PD、PO是否存在某种确定的数量关系和位置关系?写出你的结论并证明.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l与x轴、y轴分别交于点M(8,0),点N(0,6).点P从点N出发,以每秒1个单位长度的速度沿N?O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动.已知点P、Q同时出发,当点Q达点M时,P、Q两精英家教网点同时停止运动,设运动时间为t秒.
(1)设四边形MNPQ的面积为S,求S关于t的函数关系式,并写出t的取值范围.
(2)当t为何值时,PQ与l平行.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,直线AB与x轴交于点A,与y轴交于点B.
(1)写出A,B两点的坐标;(2)求直线AB的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,直线AB与x轴相交于点A(1,0),则直线AB绕点A旋转90°后所得到的直线解析式可能是(  )

查看答案和解析>>

同步练习册答案