精英家教网 > 初中数学 > 题目详情
13、若直线y=b(b为实数)与函数y=|x2-4x+3|的图象至少有三个公共点,则实数b的取值范围是
0<b≤1
分析:先求x2-4x+3=0时x的值,再求x2-4x+3>0和x2-4x+3<0时,自变量的取值范围及对应的函数式,求函数式的取值范围,判断符合条件的b的值的范围.
解答:解:∵当x2-4x+3=0时,x=1或x=3,
∴当x<1或x>3时,x2-4x+3>0,即:y=x2-4x+3,函数值大于0,
当1<x<3时,x2-4x+3<0,即:y=-x2+4x-3,函数最大值为1,
故符合条件的实数b的取值范围是0<b≤1.
点评:本题是分段函数的问题,按照绝对值里的数的符号,分段求函数,再求符合条件的b值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=
1
2
x
和y=-x+m,二次函数y=x2+px+q图象的顶点为M.
(1)若M恰在直线y=
1
2
x
与y=-x+m的交点处,试证明:无论m取何实数值,二次函数y=x2+px+q的图象与直线y=-x+m总有两个不同的交点;
(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+px+q的表达式;
(3)在(2)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x轴的左交点为A,试在抛物线的对称轴上求点P,使得△PAC为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=
1
2
x和y=-x+m,二次函数y=x2+px+q的图象的顶点为M.
(1)若M恰好在直线y=
1
2
x与y=-x+m的交点处,试证明:无论m取何实数值,二次函数y=x2+px+q的图象与直线y=-x+m总有两个不同的交点.
(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+px+q的表达式,并作出其大致图象.
(3)在(2)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x轴的左交点为A,试在精英家教网直线y=
1
2
x上求异于M的点P,使点P在△CMA的外接圆上.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)若A、B是平面直角坐标系中x轴上的两个点,点B在点A的左侧,且点A、B的横坐l标分别是(2)中方程的两个根,以线段AB为直径在x轴的上方作半圆P,设直线的解析l式为y=x+b,若直线与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

科目:初中数学 来源:1999年四川省成都市中考数学试卷(解析版) 题型:解答题

(1999•成都)已知直线y=x和y=-x+m,二次函数y=x2+px+q的图象的顶点为M.
(1)若M恰好在直线y=x与y=-x+m的交点处,试证明:无论m取何实数值,二次函数y=x2+px+q的图象与直线y=-x+m总有两个不同的交点.
(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+px+q的表达式,并作出其大致图象.
(3)在(2)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x轴的左交点为A,试在直线y=x上求异于M的点P,使点P在△CMA的外接圆上.

查看答案和解析>>

同步练习册答案