【题目】列方程解应用题
根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路.铺设600米后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?
【答案】解:设原计划每天铺设公路x米,根据题意,得……………………1分
. ……………………3分
去分母,得 1200+4200=18x(或18x=5400)
解得. ……………………4分
经检验, 是原方程的解且符合题意. ……………………5分
答:原计划每天铺设公路300米.
【解析】试题分析:设原计划每天铺设公路x米,根据实际每天修建公路的长度是原计划的2倍,结果9天完成任务,以时间做为等量关系可列方程求解.
试题解析:设原计划每天铺设公路x米,根据题意,得(1分)
去分母,得1200+4200=18x(或18x=5400)
解得x=300.(4分)
经检验,x=300是原方程的解且符合题意.(5分)
答:原计划每天铺设公路300米.
科目:初中数学 来源: 题型:
【题目】图1、图2分别是的网格,网格中每个小正方形的边长均为1,线段的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:
(1)在图1中画一个以线段为一边且周长为的平行四边形,所画图形的各顶点必须在小正方形的顶点上.
(2)在图2中画一个以线段为一边的等腰钝角三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并直接写出该等腰三角形的周长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)
在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.
(1)解方程组
(2)已知,求x+y+z的值
解:(1)把②代入①得:x+2×1=3.解得:x=1.
把x=1代入②得:y=0.
所以方程组的解为,
(2)①×2得:8x+6y+4z=20.③
②﹣③得:x+y+z=5.
(类比迁移)
(1)若,则x+2y+3z= .
(2)解方程组
(实际应用)
打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°, 连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用表示出直线BE、DF形成的锐角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,E为对角线BD的延长线上一点.
(1)求证:AE=CE.
(2)若BC=6,AE=10,∠BAE=120,求BE的长,并直接写出DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线yxb与x轴交于点A,与y轴交于点B,与直线y=x交于点E,点E的横坐标为3.
(1)求点A的坐标.
(2)在x轴上有一点P(m,0),过点P作x轴的垂线,与直线yxb交于点C,与直线y=x交于点D.若CD≥5,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在给定的一张平行四边形纸片上按如下操作:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN,CM,则四边形ANCM是( )
A. 矩形 B. 菱形 C. 正方形 D. 无法判断
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
关于的方程:
的解为: ,
(可变形为)的解为: ,
的解为: ,
的解为: ,
…………
根据以上材料解答下列问题:
(1)①方程的解为 .
②方程的解为 .
(2)解关于方程:
① ()
②()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线交 y轴于点为A,顶点为D,对称轴与x轴交于点H.
(1)求顶点D的坐标(用含m的代数式表示);
(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;
(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com