精英家教网 > 初中数学 > 题目详情
3.甲乙两同学在假日期间,义务担任“城市文明宣传员”.两人都从A地出发,骑自行车沿同一条路线宣传,均行驶到B地.他们离出发地距离S(km)与行驶时间t(h)之间的函数关系的图象如图所示.
根据图象中信息,解答以下问题:
(1)乙同学的平均速度是8千米/小时.
(2)求甲、乙相遇时,他们离出发地的距离.
(3)若甲到达B地后,立即按原速原路返回A地,还需要多少时间才能再次与乙相遇.
(4)请直接写出乙出发后多少时间两人相距1km.

分析 (1)利用总路程除以总时间得出乙的平均速度;
(2)首先求出甲行驶路程距A地的函数关系式,进而利用当x=1时,y=$\frac{20}{3}$,得出答案即可;
(3)求得2h后乙和甲的距离,以及他们两人的速度,再根据路程和÷速度和=时间,列式计算即可求解;
(4)分四种情况:第一种:乙出发而甲未出发;第二种:乙停留时甲出发;第三种:两人相遇之后且甲未到达B地,;第四种:甲到达B地而乙未到达;讨论即可求解.

解答 解:(1)20÷2.5=8(千米/小时),
故答案为:8千米/小时;
(2)设甲行驶路程距A地的函数关系式为:y=kx+b,
把(0.5,0),(2,20)代入y=kx+b得:
$\left\{\begin{array}{l}{0.5k+b=0}\\{2k+b=20}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{40}{3}}\\{b=-\frac{20}{3}}\end{array}\right.$,
∴y=$\frac{40}{3}x-\frac{20}{3}$,
当x=1时,y=$\frac{40}{3}-\frac{20}{3}=\frac{20}{3}$,
∴甲、乙相遇时,他们离出发地的距离为$\frac{20}{3}$千米;
(3)(20-$\frac{20}{3}$)÷(1.5÷1)
=$\frac{40}{3}$÷1.5
=$\frac{80}{9}$km,
20-$\frac{20}{3}$-$\frac{80}{9}$=$\frac{40}{9}$km,
$\frac{40}{9}$÷[$\frac{20}{3}$÷0.5+(20-$\frac{20}{3}$)÷1.5]
=$\frac{40}{9}$÷[$\frac{40}{3}$+$\frac{80}{9}$]
=$\frac{40}{9}$÷$\frac{200}{9}$
=0.2小时.
故还需要0.2小时时间才能再次与小李相遇.
(4)第一种:乙出发而甲未出发,$\frac{3}{40}$小时后,两人相距1km;
第二种:乙停留时甲出发,$\frac{37}{40}$小时后,两人相距1km;
第三种:两人相遇之后且甲未到达B地,$\frac{49}{40}$小时后,两人相距1km;
第四种:甲到达B地而乙未到达,$\frac{191}{80}$小时后,两人相距1km.

点评 本题考查了一次函数的运用,解决本题的关键是学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.(1)已知$\frac{a}{b}$=$\frac{3}{5}$,则$\frac{a+b}{b}$=$\frac{8}{5}$;
(2)若两个相似三角形面积之比为1:2,则它们的周长之比为1:$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.李老师到超市买了x kg香蕉,花费m元钱;y kg苹果,花费n元钱.若李老师要买2kg香蕉和3kg苹果共需花费$\frac{2m}{x}$+$\frac{3n}{y}$元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.等腰三角形的周长为80.
(1)写出底边长y与腰长x函数表达式,并写出自变量的取值范围;
(2)当腰长为30时,底边长为多少?
(3)当底边长为8时,腰长为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)、(3)所示.给出下说法:

①图(2)的建议是:提高成本,并提高票价;②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有正确说法的序号是(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.直线y=-$\frac{4}{3}$x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM折叠,点B恰好落在x轴上,则点M的坐标为(0,$\frac{3}{2}$)或(0,-6).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为(  )
A.14:00B.14:20C.14:30D.14:40

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在武汉二中广雅中学举办的演讲比赛活动中,评委将学生的成绩分为A、B、C、D四个等级,并绘制了如图所示的不完整两种统计图,根据图中所提供的信息,下列说法中错误的是(  )
A.参加演讲比赛学生共40人
B.扇形统计图中m=10,n=40
C.学校欲从获A等级的学生中随机选取2人参加市级比赛,选中A等级的小明的概率为$\frac{1}{2}$
D.C等级所对应的圆心角为120度

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为15π.

查看答案和解析>>

同步练习册答案