精英家教网 > 初中数学 > 题目详情
25、如图,已知△ABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边△ADE.
(1)△ACD和△CBF全等吗?请说明理由;
(2)判断四边形CDEF的形状,并说明理由;
(3)当点D在线段BC上移动到何处时,∠DEF=30°.
分析:(1)△ACD和△CBF中,已知的条件有:AC=BC,CD=BF,∠ACD=∠CBF=60°;根据SAS即可判定两个三角形全等.
(2)由(1)的全等三角形知:AD=CF,即DE=CF=AD;因此只需判断DE与CF是否平行即可.
由(1)的全等三角形,可得∠DAC=∠BCF,而∠BCF+∠ACG=60°,即∠CAD+∠ACG=60°;根据三角形外角的性质,可得∠DBC=60°=∠ADE,由此可判定DE∥FC,即可得出四边形CDEF的形状.
(3)由于四边形EDCF是平行四边形,当∠DEF=30°时,∠DCF=30°;由(2)知:∠DCF=∠DAC,因此∠DAC=30°,即D点移动到BC中点时∠DEF=30°.
解答:解:(1)△ACD≌△CBF
证:∵△ABC为等边三角形
∴AC=BC
∠ACD=∠B=60°
∵CD=BF
∴△ACD≌△CBF(SAS)
(2)四边形CDEF为平行四边形
∵△ACD≌△CBF
∴∠DAC=∠BCF,CF=AD
∵△AED是等边三角形
∴AD=DE
∴CF=DE①
∴∠ACG+∠BCF=60°
∴∠ACG+∠DAC=60°
∴∠AGC=180°-(∠ACG+∠DAC)=120°
∴∠DGF=∠AGC=120°
∵△AED是等边三角形
∴∠ADE=60°
∴∠DGF+∠ADE=180°
∴CF∥DE②
综合①②可得四边形CDEF是平行四边形.
(3)当点D是BC中点时,∠DEF=30°.
点评:本题主要考查了等边三角形的性质、全等三角形及平行四边形的判定和性质等知识,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3精英家教网,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.
(1)用m表示点A、D的坐标;
(2)求这个二次函数的解析式;
(3)点Q为二次函数图象上点P至点B之间的一点,且点Q到△ABC边BC、AC的距离相等,连接PQ、BQ,求四边形ABQP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为等边三角形,D,E,F分别在边BC,CA,AB上,且△DEF也是等边三角形,除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC为等边三角形,点D.E分别在BC.AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.

查看答案和解析>>

同步练习册答案