精英家教网 > 初中数学 > 题目详情
已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有( )

A.1个
B.2个
C.3个
D.4个
【答案】分析:根据已知利用等腰梯形的性质对各个结论进行分析从而得出最后的答案.
解答:解:根据四边形ABCD是等腰梯形,可得出的条件有:AC=BD,∠OAB=∠OBA=∠ODC=∠OCD(可通过全等三角形ABD和BAC得出),OA=OB,OC=OD,∠ACB=∠ADB=90°(三角形ACB和BDA全等).
①要证BD∥EF就要得出∠ADB=∠EFD,而∠ADB=90°,∠EFD=90°,因此∠ADB=∠EFD,此结论成立;
②由于BD∥EF,∠AEF=∠AOD,而∠AOD=∠OAB+∠OBA=2∠OAB,因此∠AEF=2∠OAB,此结论成立.
③在直角三角形ABE中,∠OAB=∠OBA,∠OAB+∠OEB=∠OBA+∠OBE=90°,因此可得出∠OEB=∠OBE,因此OA=OB=OE,那么O就是直角三角形ABE斜边AE的中点,由于OD∥EF,因此OD就是三角形AEF的中位线,那么D就是AF的中点,因此此结论也成立.
④由③可知EF=2OD=2OC,而OA=OE=OC+CE.那么AC=OA+OC=OC+OC+CE=2OC+CE=EF+CE,因此此结论也成立.
故选D.
点评:本题主要考查了等腰梯形的性质.根据等腰梯形的性质得出的角和边相等是解题的基础.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、已知:如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC与BD相交于点O,则图中全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,梯形ABCD中,AD∥BC,∠DAB=120°,tanC=
3
6
,BC=18,AD=AB.求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知,如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则CD:AB=
1:2
,△COD与△BOC的面积比为
1:4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,梯形ABCD中,AB∥CD,AD=BC,对角线AC、BD交于M,AB=2,CD=4,∠CMD=90°,求:BD的长.

查看答案和解析>>

科目:初中数学 来源:中华题王 数学 九年级上 (北师大版) 北师大版 题型:047

已知:如图,梯形AB-CD中,AB∠DC,E是BC的中点,AE、DC的延长线相交于点F,连结AC、BF.(1)求证:AB=CF;(2)四边形ABFC是什么四边形,并说明你的理由.

查看答案和解析>>

同步练习册答案