【题目】为迎接国庆节,某工厂生产一种火爆的纪念商品,每件商品成本25元,工厂将该商品进行网络批发,批发单价(元)与一次性批发量(件)(为正整数)之间满足如图所示的函数关系.
(1)求与的函数解析式(也称关系式).
(2)若一次性批发量超过20且不超过50件时,求获得的利润与的函数关系式,同时求当批发量为多少件时,工厂获利最大?最大利润是多少?
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.
(1)求劣弧PC的长;(结果保留π)
(2)求阴影部分的面积.(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为BC边上一动点(不与点B、C重合),延长AE到点F,连接BF,且∠AFB=45°,G为DC边上一点,且DG=BE,连接DF,点F关于直线AB的对称点为M,连接AM、BM.
(1)依据题意,补全图形;
(2)求证:∠DAG=∠MAB;
(3)用等式表示线段BM、DF与AD的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.
操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:
①线段CE与线段BD之间的数量关系是 .
②直线CE与直线BD之间的位置关系是 .
类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.
拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB上方时,若DE∥AB,且AB=,AD=1,其他条件不变,试求出线段CE的长.(直接写出结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以A(0, )为圆心的圆与x轴相切于坐标原点O,与y轴相交于点B,弦BD的延长线交x轴的负半轴于点E,且∠BEO=60°,AD的延长线交x轴于点C.
(1)分别求点E、C的坐标;
(2)求经过A、C两点,且以过E而平行于y轴的直线为对称轴的抛物线的函数解析式;
(3)设抛物线的对称轴与AC的交点为M,试判断以M点为圆心,ME为半径的圆与⊙A的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,基灯塔AB建在陡峭的山坡上,该山坡的坡度i=1:0.75.小明为了测得灯塔的高度,他首先测得BC=20m,然后在C处水平向前走了34m到达一建筑物底部E处,他在该建筑物顶端F处测得灯塔顶端A的仰角为43°.若该建筑物EF=20m,则灯塔AB的高度约为(精确到0.1m,参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)( )
A.46.7mB.46.8mC.53.5mD.67.8m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学全体同学参加了“关怀贫困学生”爱心捐款活动,该校随机抽查了七、八、九三个年级部分学生捐款情况,将结果绘制成两幅不完整的统计图.根据图中的信息,解决下列问题:
(1)这次共抽查了_______名学生进行统计,其中类所对应扇形的圆心角的度数为________;
(2)将条形统计图补充完整;
(3)该校有名学生,估计该校捐款元的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点并在点处安装了测量器在点处测得该灯的顶点P的仰角为;再在的延长线上确定一点使米,在点处测得该灯的顶点的仰角为.若测量过程中测量器的高度始终为米,求“天下第一灯”的高度.,最后结果取整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com