精英家教网 > 初中数学 > 题目详情

【题目】如图,EF是平行四边形ABCD对角线AC上两点,AE=CF

证明(1△ABE≌△CDF

2BE∥DF

【答案】见解析.

【解析】

试题(1)、根据平行四边形得出AB=CDAB∥CD,即∠ABE=∠DCF,结合AE=CF得出△ABE△DCF全等;(2)、根据全等得出∠AEB=∠CFD,从而得到∠BEC=∠AFD,得到平行.

试题解析:(1)四边形ABCD是平行四边形 ∴AB=CDAB∥CD ∴∠BAE=∠DCF

∵AE=CF ∴△ABE≌△DCF(SAS)

(2)、由(1)知△ABE≌△DCF ∴∠AEB=∠CFD ∵∠AEB+∠CEB=∠CFD+∠AFD=180°

∴∠BEC=∠AFD ∴BE∥DF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以四边形ABCD的边ABAD为边分别向外侧作等边三角形ABFADE,连接EBFD,交点为G

(1)当四边形ABCD为正方形时(如图1),EBFD的数量关系是   

(2)当四边形ABCD为矩形时(如图2),EBFD具有怎样的数量关系?请加以证明;

(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)单项式﹣2x3ym5xn+1y的差是一个单项式,求的值;

(2)化简求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,对角线ACBD相交于点O,给出下列四组条件:①AB∥CDAD∥BC②AB=CDAD=BC③AO=COBO=DO④AB∥CDAD=BC。其中一定能判断这个四边形是平行四边形的条件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)写出数轴上点B表示的数 ,点P表示的数 (用含t的代数式表示);

(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EF分别为平行四边形ABCD的对边ADBC上的点,且DE=BFEM⊥ACMFN⊥ACNEFAC于点O

求证:(1EM=FN

2EFMN互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.

(1)请写出与A,B两点距离相等的点M所对应的数   

(2)现有一只电子蚂蚁PB出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,x秒后两只电子蚂蚁在数轴上的C点相遇,请列方程求出x,并指出点C表示的数.

(3)若当电子蚂蚁PB点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,y秒后两只电子蚂蚁在数轴上的D点相遇,请列方程求出y并指出点D表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列方程的特征及其解的特点.

x=-3的解为x1=-1,x2=-2;

x=-5的解为x1=-2,x2=-3;

x=-7的解为x1=-3,x2=-4.

解答下列问题:

(1)请你写出一个符合上述特征的方程为________,其解为________

(2)根据这类方程的特征,写出第n个方程为________,其解为________

(3)请利用(2)的结论,求关于x的方程x=-2(n+2)(其中n为正整数)的解.

查看答案和解析>>

同步练习册答案