精英家教网 > 初中数学 > 题目详情
6.平行四边形ABCD中,∠BCD=90°,AE平分∠BAD交BC于点E,交DC的延长线于点F,交BD于M,点G为EF的中点,连接CG、BG、DG.
(1)求证:△DCG≌△BEG;
(2)若AB=$\sqrt{2}$CG,DC=2,求MG;
(3)在(2)的条件下,延长BG交DF于N,求△NCG的内切圆半径.

分析 (1)欲证明△DCG≌△BEG,只要证明BE=CD,∠BEG=∠DCG=135°,EG=GC即可.
(2)欲求MG,因为MG=AF-AM-FG,所以想办法求出AM、FG、AF即可解决问题.
(3)作GK⊥CF于K,设△CGN内切圆半径为r,根据$\frac{1}{2}$•CN•GK=$\frac{1}{2}$(CG+CN+GN)•r,只要求出CN、GN、CG、GK即可解决问题.

解答 (1)证明:如图1中,∵四边形ABCD是矩形,
∴AB=DC,∠BAD=∠ABC=∠BCD=90°,AD
∵EA平分∠BAD,
∴∠BAE=∠DAE=∠AEB=∠CEF=45°,
∵∠BCF=90°,
∴∠F=∠CEF=45°,
∴AB=BE=CD,CE=CF
∵EG=GF,∠ECF=90°,
∴EG=CG=FG,∠ECG=∠GCF=45°,
∴∠BEG=∠GCD=135°,
在△BEG和△DCG中,
$\left\{\begin{array}{l}{BE=DC}\\{∠BEG=∠DCG}\\{EG=CG}\end{array}\right.$,
∴△DCG≌△BEG.
(2)如图1中,∵AB=$\sqrt{2}$CG,DC=2,
∴AB=CD=2,CG=EG=GF=$\sqrt{2}$,
∴EC=CF=2,
∴AB=CF=DC=2,AF=$\sqrt{A{D}^{2}+D{F}^{2}}$=4$\sqrt{2}$,
∵AB∥DF,
∴$\frac{AM}{MF}$=$\frac{AB}{DF}$,
∴AM=$\frac{1}{3}$AF=$\frac{4\sqrt{2}}{3}$,
∴MG=AF=AM-FG=$\frac{5\sqrt{2}}{3}$.
(3)如图2中,作GK⊥CF于K.
∵AB∥NF,
∴$\frac{NF}{AB}$=$\frac{GF}{AG}$=$\frac{GN}{BG}$=$\frac{1}{3}$,
∴NF=$\frac{2}{3}$,CN=CF-NF=$\frac{4}{3}$,
在RT△BCN中,NB=$\sqrt{B{C}^{2}+C{N}^{2}}$=$\frac{4\sqrt{10}}{3}$,
∴GN=$\frac{1}{4}$NB=$\frac{\sqrt{10}}{3}$,
在RT△CGK中,∵∠GCK=45°,CG=$\sqrt{2}$,
∴CK=GK=1,设△CGN内切圆半径为r,
则有:$\frac{1}{2}$•CN•GK=$\frac{1}{2}$(CG+CN+GN)•r,
∴r=$\frac{4}{3\sqrt{2}+\sqrt{10}+4}$.

点评 本题考查圆的综合题、矩形的性质、全等三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,记住三角形内切圆半径的求法,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.某校七年级各班分别选出3名学生组成班级代表队,参加知识竞赛,得分最多的班级为优胜班级,各代表队比赛结果如下:
班级七(1)七(2)七(3)七(4)七(5)七(6)七(7)七(8)七(9)七(10)
得分8590901008010090808590
(1)写出表格中得分的众数、中位数;
(2)学校从获胜班级的代表队中各抽取1名学生组成“绿色环保监督”小组,小明、小红分别是七(4)班和七(6)班代表队的学生,用列表法或画树状图的方法说明同时抽到小明和小红的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,抛物线y=a(x-1)2-4a(a>0)交x轴于A、B两点,点A在点B的左边,其顶点为点C,一条开口向下的抛物线经过A、B、D三点,其顶点D在x轴上方,且其纵坐标为3,连接AC、AD、CD.
(1)直接写出A、B两点的坐标;
(2)求经过A、B、D三点的抛物线所对应的函数表达式;
(3)当△ACD为等腰三角形时,求a的值;
(4)将线段AC绕点A旋转90°,若点C的对应点恰好落在(2)中的抛物线上,直接写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在平面直角坐标系中,直线y=-$\frac{3}{5}x$+3与x轴、y轴相交于B、C两点,动点D在线段OB上,将线段DC绕着点D顺时针旋转90°得到DE,过点E作直线l⊥x轴于H,过点C作CF⊥y轴,交直线l于F,设点D的横坐标为m.
(1)请直接写出点B、C的坐标;
(2)当点E落在直线BC上时,求tan∠FDE的值;
(3)对于常数m,探究:在直线l上是否存在点G,使得∠CDO=∠DFE+∠DGH?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,6,7,x,10,9,已知这组数据的平均数是8,则这组数据的中位数是8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,直线a∥b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为(  )
A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.2015年12月26日,南昌地铁一号线正式开通试运营.据统计,开通首日全天客流量累积近25万人次,数据25万可用科学记数法表示为(  )
A.0.25×105B.2.5×104C.25×104D.2.5×105

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:
$\frac{1}{a+2b}$+$\frac{2{a}^{2}}{{a}^{2}-ab}$÷($\frac{3{b}^{2}}{a-b}$-a-b),其中a,b满足$\left\{\begin{array}{l}{a+b=3}\\{2a-b=0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线交⊙A于点F,连接AF,BF,DF.
(1)求证:△ABC≌△ABF;
(2)填空:
①当∠CAB=60°时,四边形ADFE为菱形;
②在①的条件下,BC=6cm时,四边形ADFE的面积是6$\sqrt{3}$cm2

查看答案和解析>>

同步练习册答案