精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,EF∥AC,则∠CEF的大小为
 
分析:由于CD⊥AB,利用勾股定理可求AD=9,同理可求BD=16,进而可求AB=25,而AC2+BC2=625=AB2,易证△ABC是直角三角形,从而∠ACB=90°,而CE是角平分线,易求∠ACE,利用平行线的性质可求∠CEF的度数.
解答:精英家教网解:根据题意可得
∵CD⊥AB,
∴∠ADC=∠CDB=90°,
在Rt△ACD中,AD2=AC2-CD2
∴AD=9,
同理可求BD=16,
∴AB=25,
∵AC2+BC2=625=AB2
∴△ABC是直角三角形,
∴∠ACB=90°,
∴S△ABC=
1
2
×AB×CD=
1
2
×AC×BC,
∴AB×12=15×20,
∴AB=25,
又∠ACB=90°,
∵CE是角平分线,
∴∠ACE=∠BCE=45°,
∵EF∥AC,
∴∠CEF=∠ACE=45°.
故答案是45°.
点评:本题考查了三角形的面积、勾股定理逆定理、平行线性质.解题的关键是根据勾股定理可求AB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案