精英家教网 > 初中数学 > 题目详情
已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作C精英家教网E⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,AB=4
5

(1)求AC的长;
(2)求EG的长.
分析:(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根据相似三角形对应边成比例,列出比例式整理即可得到AC2=AE•AD,代入数据计算即可;
(2)根据勾股定理求出BC的长度为8,再根据AD平分∠CAB交BC于点D,CE⊥AD证明△ACE和△AFE全等,根据全等三角形对应边相等,CE=EF,最后根据三角形的中位线平行于第三边并且等于第三边的一半EG=
1
2
BC.
解答:解:(1)∵CE⊥AD,
∴∠AEC=90°,
∵∠ACB=90°,
∴∠AEC=∠ACB,
又∠CAE=∠CAE,
∴△ACE∽△ADC,
AC
AE
=
AD
AC

即AC2=AE•AD,
∵AE•AD=16,
∴AC2=16,
∴AC=4;

(2)在△ABC中,BC=
AB2-AC2
=
(4
5
)
2
-42
=8,
∵AD平分∠CAB交BC于点D,
∴∠CAE=∠FAE,
∵CE⊥AD,
∴∠AEC=∠AEF=90°,
在△ACE和△AFE中,
∠CAE=∠FAE
AE=AE
∠AEC=∠AEF=90°

∴△ACE≌△AFE(ASA),
∴CE=EF,
∵EG∥BC,
∴EG=
1
2
BC=
1
2
×8=4.
点评:本题主要考查两角对应相等,两三角形相似,相似三角形对应边成比例,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟练掌握性质并灵活运用是解题的关键,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案