分析 (1)根据题意求出BP,计算即可;
(2)根据全等三角形的判定定理解答;
(3)分△ABP≌△QCP和△ABP≌△PCQ两种情况,根据全等三角形的性质解答.
解答 解:(1)∵点P的速度是1cm/s,
∴ts后BP=tcm,
∴PC=BC-BP=(5-t)cm,
故答案为:5-t;
(2)当t=2.5时,△ABP≌△DCP,
∵当t=2.5时,BP=CP=2.5,
在△ABP和△DCP中,
$\left\{\begin{array}{l}{AB=DC}\\{∠B=∠C}\\{BP=CP}\end{array}\right.$,
∴△ABP≌△DCP;
(3)∵∠B=∠C=90°,
∴当AB=PC,BP=CQ时,△ABP≌△PCQ,
∴5-t=3,t=at,
解得,t=2,a=1,
当AB=QC,BP=CP时,△ABP≌△QCP,
此时,点P为BC的中点,点Q与点D重合,
∴t=2.5,at=3,
解得,a=1.2,
综上所述,当a=1或a=1.2时,△ABP与△PCQ全等.
点评 本题考查的是矩形的性质、全等三角形的判定和性质,掌握矩形的对边相等、四个角都是直角以及全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com