精英家教网 > 初中数学 > 题目详情

如果a为不等于±2的整数,证明方程x4+ax+1=0没有有理根.

证明:若a=2或者-2,方程有有理根,
当=2时,有理根x=-1;等于-2时,有理根x=1.这个根据配方法得来.
x4±2x+1=0,即x4-x2+x2±2x+1=x2(x+1)(x-1)+(x±1)2=0,此等式有公因式,可得x=±1.
而由题意知:a≠±2,即x≠±1.
则有a=-=-x3-,其中x≠±1.
a为整数,而a=-x3-,若x为整数且x≠±1,那么x3为整数,为小数,整数与小数之和或者差,皆为小数,故x不能是整数.
若x为分数,那么设x=,其中c、b互质且为整数,b≠0.
那么-x3-=-=-.由此代数式知:因为c、b互质,故此代数式的值不为整数.
故当x为整数或者分数时,a为整数均不能成立.
故当a为整数时,方程没有有理根.
分析:首先用x表示出a,即a=-x3-,再进一步分析x的取值,x不是整数,若x为分数,那么设x=,其中c、b互质且为整数,从而确定x的取值范围.
点评:此题主要考查了一元二次方程有理根以及整数根的有关知识,以及两数互质问题,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、下列事件中,为不确定事件的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如果六个不等于0的数相乘的积为负数,那么这六个乘数中,正的乘数有几个?举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如果六个不等于0的数相乘的积为负数,那么这六个乘数中,正的乘数有几个?举例说明.

查看答案和解析>>

同步练习册答案