(1)证明:∵△ABD和△ACE都是等边三角形,
∴AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,
∴∠BAC+∠CAE=∠BAC+∠BAD,
即∠BAE=∠DAC.
在△ABE和△ADC中
∵
∴△ABE≌△ADC(SAS),
∴BE=DC.
(2)解:由(1)知:△ABE≌△ADC,
∴∠ADC=∠ABE
∴∠ADC+∠BDO=∠ABE+∠BDO=∠BDA=60°
∴在△BOD中,∠BOD=180°-∠BDO-∠DBA-∠ABE
=180°-∠DBA-(∠ADC+∠BDO)
=180°-60°-60°
=60°.
(3)证明:过点A分别作AM⊥BE,AN⊥DC,垂足为点M,N.
∵由(1)知:△ABE≌△ADC,
∴S
△ABE=S
△ADC∴
∴AM=AN
∴点A在∠DOE的平分线上,
即OA平分∠DOE.
分析:(1)根据等边三角形性质得出AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,求出∠BAE=∠DAC.根据SAS证△ABE≌△ADC即可.
(2)根据全等求出∠ADC=∠ABE,在△DOB中根据三角形的内角和定理和∠ADB=∠DBA=60°即可求出答案.
(3)过点A分别作AM⊥BE,AN⊥DC,垂足为点M,N.根据三角形的面积公式求出AN=AM,根据角平分线性质求出即可.
点评:本题考查了等边三角形性质,三角形的面积,全等三角形的性质和判定,三角形的内角和定理的综合运用.