精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交与A,B两点,与y轴交与点C,已知点A的坐标为(-2,0),sin∠ABC=
2
5
5
,点D是抛物线的顶点,直线DC交x轴于点E.
(1)求抛物线的解析式及其顶点D的坐标;
(2)在直线CD上是否存在一点Q,使以B,C,Q为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由;
(3)点P是直线y=2x-4上一点,过点P作直线PM垂直于直线CD,垂足为M,若∠MPO=75°,求出点P的坐标.
(1)∵二次函数y=ax2+bx+8(a≠0)的图象与y轴交与点C,
∴点C(0,8),即OC=8;
Rt△OBC中,BC=OC÷sin∠ABC=8÷
2
5
5
=4
5

OB=
BC2-OB2
=4,
则点B(4,0).
将A、B的坐标代入抛物线的解析式中,得:
4a-2b+8=0
16a+4b+8=0

解得
a=-1
b=2

故抛物线的解析式:y=-x2+2x+8=-(x-1)2+9,顶点D(1,9);

(2)在直线CD上存在点Q,能够使以B,C,Q为顶点的三角形是等腰三角形.理由如下:
设直线CD的解析式为y=kx+m,
将C(0,8),D(1,9)代入,
m=8
k+m=9
,解得
k=1
m=8

则直线CD的解析式为y=x+8.
设Q点的坐标为(x,x+8).
以B,C,Q为顶点的三角形是等腰三角形时,分三种情况讨论:
①当BQ=BC=4
5
时,有(x-4)2+(x+8)2=80,
整理,得2x2+8x=0,
解得x1=-4,x2=0(不合题意,舍去).
当x=-4时,x+8=4,即此时Q点的坐标为(-4,4);
②当CQ=BC=4
5
时,有x2+(x+8-8)2=80,
整理,得2x2=80,
解得x1=2
10
,x2=-2
10

当x=2
10
时,x+8=2
10
+8,即此时Q点的坐标为(2
10
,2
10
+8);
当x=-2
10
时,x+8=-2
10
+8,即此时Q点的坐标为(-2
10
,-2
10
+8);
③当QB=QC时,有(x-4)2+(x+8)2=x2+(x+8-8)2
整理,得8x+80=0,
解得x=-10.
当x=-10时,x+8=-2,即此时Q点的坐标为(-10,-2).
综上可知,在直线CD上存在点Q,能够使以B,C,Q为顶点的三角形是等腰三角形,此时点Q的坐标为(-4,4)或(2
10
,2
10
+8)或(-2
10
,-2
10
+8)或(-10,-2);

(3)设直线CD:y=x+8与x轴交于点E,则点E(-8,0),OC=OE=8,∠CEO=45°.
设直线y=2x-4与直线CD交于点F,分两种情况讨论:
①当点P在点F的下方时,如右图1,过点P作PQ⊥x轴于点Q.
在四边形EMPQ中,∠MPQ=360°-∠PME-∠PQE-∠MEQ=360°-90°-90°-45°=135°,
当∠MPO=75°时,∠OPQ=135°-75°=60°,∠POQ=30°,则直线OP的解析式为y=
3
3
x.
解方程组
y=
3
3
x
y=2x-4
,得
x=
24+4
3
11
y=
4+8
3
11

即此时P点的坐标为(
24+4
3
11
4+8
3
11
);
②当点P在点F的上方时,如右图2,过点P作PQ⊥x轴于点Q,设直线CD与直线OP交于点G.
在△MPG中,∠MGP=180°-∠PMG-∠GPM=180°-90°-75°=15°,
∴∠EGO=∠MGP=15°,
∴∠GOQ=∠GEO+∠EGO=45°+15°=60°,
∴直线OP的解析式为y=
3
x.
解方程组
y=
3
x
y=2x-4
,得
x=8+4
3
y=8
3
+12

即此时P点的坐标为(8+4
3
,8
3
+12).
综上可知,点P的坐标为(
24+4
3
11
4+8
3
11
)或(8+4
3
,8
3
+12).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(3)如果直线x=m在线段OB上移动,交x轴于点D,交抛物线于点E,交BD于点F.连接DE和BE后,对于问题“是否存在这样的点E,使△BDE的面积最大?”小明同学认为:“当E为抛物线的顶点时,△BDE的面积最大.”他的观点是否正确?提出你的见解,若△BDE的面积存在最大值,请求出m的值以及点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
4
x2+1(如图所示).
(1)填空:抛物线的顶点坐标是(______,______),对称轴是______;
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=
1
2
x2+mx+n过原点O,与x轴交于A,点D(4,2)在该抛物线上,过点D作CDx轴,交抛物线于点C,交y轴于点B,连接CO、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCO绕点O按顺时针旋转90°后再沿x轴对折得到△OEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交OA于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形AOCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a>0)经过点A(-3
3
,0
),B(
3
,0
)与y轴交于点C,设抛物线的顶点为D,在△BCD中,边CD的高为h.
(1)若c=ka,求系数k的值;
(2)当∠ACB=90°,求a及h的值;
(3)当∠ACB≥90°时,经过探究、猜想请你直接写出h的取值范围.
(不要求书写探究、猜想的过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W(千克)与销售价x(元/千克)有如下关系:W=-2x+80,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某工艺厂为配合2010年上海世博会,设计了一款成本为20元/件的工艺品投放市场进行试销.该工艺品每天试销情况经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系______;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润W最大?(利润=销售总价-成本总价).
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么工艺厂试销该工艺品每天获得的利润最大是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量.根据经验估计,每多种一棵橙树,平均每棵树就会少结5个橙子.
(1)写出果园橙子的总产量y(个)与增种橙树的棵数x(棵)的函数关系式;
(2)求出当x取何值时y的值最大?y的值最大是多少?

查看答案和解析>>

同步练习册答案