精英家教网 > 初中数学 > 题目详情

【题目】一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

1)设江水的流速为千米/时,填空:轮船顺流航行速度为_________千米/时,逆流航行速度为_________千米/时,顺流航行100千米所用时间为_________小时,逆流航行60千米所用时间为_________小时.

2)列出方程,并求出问题的解.

【答案】1;(2)江水的流速为5千米/.

【解析】

(1)根据轮船顺流航行速度=轮船在静水中的最大航速+江水的流速,逆流航行速度=轮船在静水中的最大航速-江水的流速,即可得到答案;

(2)根据沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,列出方程,即可求解.

(1)∵轮船顺流航行速度=轮船在静水中的最大航速+江水的流速,

∴轮船顺流航行速度为千米/时,

∵逆流航行速度=轮船在静水中的最大航速-江水的流速,

∴逆流航行速度为千米/时,

∴顺流航行100千米所用时间为小时,逆流航行60千米所用时间为小时.

故答案是:

2)根据题意,列方程得:

方程两边同乘,得

解得:.

经检验,是原分式方程的解,且符合题意.

答:江水的流速为5千米/.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知菱形分别是的中点,连接

求证:四边形是矩形;

,求菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点轴上,点坐标为

1)求点轴的距离;

2)连接,当时,求点的坐标;

3)在(2)的条件下,猜想线段和线段的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市今年中考理化实验操作考试,采用学生抽签方式决定自己的考试内容.规定每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学试验(用纸签D、E、F表示)中各抽取一个实验操作进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.用列表或画树状图的方法求小刚抽到物理实验B和化学实验F的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,角所对的直角边等于斜边的一半。小明同学对以上结论作了进一步探究.如图1,在中,,则:.

探究结论:(1)如图1边上的中线,易得结论:________三角形.

2)如图2,在中,边上的中线,点是边上任意一点,连接,在边上方作等边,连接.试探究线段之间的数量关系,写出你的猜想加以证明.

拓展应用:如图3,在平面直角坐标系中,点的坐标为,点轴正半轴上的一动点,以为边作等边,当点在第一象内,且时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2﹣2x+3x轴交于点AB,把抛物线与线段AB围成的图形记为C1Cl绕点B中心对称变换得C2C2x轴交于另一点C,将C2绕点C中心对称变换得C3连接CC3的顶点,则图中阴影部分的面积为(

A. 32 B. 24 C. 36 D. 48

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:

方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为若点在该抛物线上,则

其中正确的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有(  )

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

同步练习册答案