精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,CD、CE分别是高和角平分线,已知△BEC的面积是15,△CDE的面积为3,则△ABC的面积为(  )
分析:首先过点E作EM⊥BC于M,EN⊥AC于N,根据角平分线的性质,即可得EM=EN,然后设S△ACD=x,根据三角形的面积求解方法,可得
S△ACE
S△BCE
=
AC
BC
=
AE
BE
=
x+3
15
,又由△ACD∽△CBD,可得
S△ACD
S△BCD
=
AC2
BC2
=(
x+3
15
2,即可得方程:
x
18
=(
x+3
15
2,解此方程即可求得答案.
解答:解:过点E作EM⊥BC于M,EN⊥AC于N,
∵CE是△ABC的角平分线,
∴EM=EN,
设S△ACD=x,
∵S△ACE=
1
2
AC•EN=
1
2
AE•CD,S△BCE=
1
2
BC•EM=
1
2
BE•CD,
S△ACE
S△BCE
=
AC
BC
=
AE
BE
=
x+3
15

∵∠ADC=∠CDB=90°,
∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD,
∴△ACD∽△CBD,
S△ACD
S△BCD
=
AC2
BC2
=(
x+3
15
2
S△ACD
S△BCD
=
x
18

x
18
=(
x+3
15
2
解得:x=2或4.5,
∴S△ABC=2+18=20或S△ABC=18+4.5=22.5.
故选A.
点评:此题考查了相似三角形的判定与性质、直角三角形的性质,角平分线的性质以及三角形面积的求解方法.此题综合性较强,难度较大,解题的关键是方程思想与数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案