精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形 ABCD中, AB16 , BC18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' .

(I) AE0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;

(II) AE3 时, △CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;

(III)AE8时,且点 B' 落在矩形内部(不含边长,试直接写出 DB' 的取值范围.

【答案】(I) ;(II) 1610;(III) .

【解析】

(I)根据已知条件直接写出答案即可.

(II)分两种情况: 讨论即可.

(III)根据已知条件直接写出答案即可.

(I)

(II)∵四边形是矩形,∴.

分两种情况讨论:

(i)如图1,

时,即是以为腰的等腰三角形.

(ii)如图2,当时,过点,分别交于点.

∵四边形是矩形,

,.

∴四边形是平行四边形,又

是矩形,∴,即

中,由勾股定理得:

中,由勾股定理得:

综上,的长为1610.

(III) . (或).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证: =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,M、E、F三点在 上,N是矩形两对角线的交点.若 =24, =32, =16, =8, =7,则下列哪一条直线是A、C两点的对称轴?(  )
A.直线MN
B.直线EN
C.直线FN
D.直线DN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库41日~44日的水位变化情况:

日期x

1

2

3

4

水位y()

20.0

20.5

21.0

21.5

(1)请建立该水库水位y()与日期x之间的函数模型,求出函数表达式;

(2)请用求出的函数表达式预测该水库今年46日的水位;

(3)你能用求出的函数表达式预测该水库今年121日的水位吗?请简要说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:

(1)画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标.

(2)画出A1B1C1绕原点O旋转180°后得到的A2B2C2,并写出点A2的坐标.

【答案】(1)作图见解析;点A1的坐标(2,﹣4);(2)作图见解析;点A2的坐标(﹣2,4).

【解析】

试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;

(2)将A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得A2B2C2

试题解析:(1)如图所示:点A1的坐标(2,﹣4);

(2)如图所示,点A2的坐标(﹣2,4).

考点:1.作图-旋转变换;2.作图-轴对称变换.

型】解答
束】
18

【题目】观察下面的点阵图和相应的等式,探究其中的规律:

(1)认真观察,并在④后面的横线上写出相应的等式.

1=1 1+2==3 1+2+3==6    

(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.

1=121+3=223+6=326+10=42   

(3)通过猜想,写出(2)中与第n个点阵相对应的等式   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.
(1)求出此时点A到岛礁C的距离;
(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)( 2﹣(﹣1)2016 +(π﹣1)0
(2)化简: ÷(1﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在线段AB的同侧作射线AM和BN,若MAB与NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且ACB=60°时,有以下两个结论:

①∠APB=120°AF+BE=AB.

那么,当AMBN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;

(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.

查看答案和解析>>

同步练习册答案