分析 由点A、B的坐标可得到AB=2$\sqrt{2}$,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.
解答 解:
∵点A、B的坐标分别为(2,2)、B(4,0).
∴AB=2$\sqrt{2}$,
①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),
∵点(0,4)与直线AB共线,
∴满足△ABC是等腰三角形的C点有1个;
②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;
③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;
综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.
故答案为:5.
点评 本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.
科目:初中数学 来源: 题型:选择题
A. | 1:10 | B. | 1:5 | C. | 3:10 | D. | 2:5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3cm | B. | 4cm | C. | 5cm | D. | 6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com