精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中xOy中,一次函数y=
54
x+m
(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过A、C两点,并与x轴的正半轴交于点B.
(1)求点C的坐标;
(2)求抛物线的函数表达式;
(3)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F,是否存在这样的点E,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.
分析:(1)首先求得m的值和直线的解析式,进而得出C点坐标;
(2)根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;
(3)存在点E使得以A、C、E、F为顶点的四边形是平行四边形.如答图1所示,过点E作EG⊥x轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,如答图1所示,不要漏解.
解答:解:(1)∵y=
5
4
x+m经过点(-3,0),
∴0=-
15
4
+m,
解得:m=
15
4

∴直线解析式为:y=
5
4
x+
15
4

C(0,
15
4
);

(2)∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(-3,0),
∴另一交点为B(5,0),
设抛物线解析式为y=a(x+3)(x-5),
∵抛物线经过C(0,
15
4
),
15
4
=a•3(-5),
解得a=-
1
4

∴抛物线解析式为y=-
1
4
x2+
1
2
x+
15
4


(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,
则AC∥EF且AC=EF.如答图1,

(i)当点E在点E位置时,过点E作EG⊥x轴于点G,
∵AC∥EF,∴∠CAO=∠EFG,
在△CAO和△EFG中
∠COA=∠EGF
∠GFE=∠CAO
AC=EF

∴△CAO≌△EFG(AAS),
∴EG=CO=
15
4

即yE=
15
4

15
4
=-
1
4
xE2+
1
2
xE+
15
4

解得xE=2(xE=0与C点重合,舍去),
∴E(2,
15
4
),
S?ACEF=
15
2

(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,
-
15
4
=-
1
4
x2+
1
2
x+
15
4

解得:x=1±
31
,(负数舍去),则x=1+
31

可得E′(
31
+1,-
15
4
),
S?ACE′F′=
15
31
+105
4
点评:本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程根与系数的关系以及二次根式的运算、平行四边形、全等三角形等.本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案