【题目】如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点B、C;抛物线y=﹣x2+bx+c经过B、C两点,并与x轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设P(x,y)是(1)所得抛物线上的一个动点,过点P作直线l⊥x轴于点M,交直线BC于点N.
①若点P在第一象限内.试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;
②求以BC为底边的等腰△BPC的面积.
【答案】(1)所求函数关系式为y=﹣x2+2x+3;
(2)①线段PN的长度的最大值为.
②或,
【解析】
试题(1)利用一次函数与坐标轴坐标求法,得出B、C两点的坐标,利用待定系数法求出二次函数解析式.
(2)利用二次函数最值求法不难求出,再利用三角形面积之间的关系,可求出等腰△BPC的面积
试题解析:(1)由于直线y=﹣x+3经过B、C两点,
令y=0得x=3;令x=0,得y=3,
∴B(3,0),C(0,3),
∵点B、C在抛物线y=﹣x2+bx+c上,于是得,
解得b=2,c=3,
∴所求函数关系式为y=﹣x2+2x+3;
(2)①∵点P(x,y)在抛物线y=﹣x2+2x+3上,
且PN⊥x轴,
∴设点P的坐标为(x,﹣x2+2x+3),
同理可设点N的坐标为(x,﹣x+3),
又点P在第一象限,
∴PN=PM﹣NM,
=(﹣x2+2x+3)﹣(﹣x+3),
=﹣x2+3x,
=—,
∴当时,
线段PN的长度的最大值为.
②解:
由题意知,点P在线段BC的垂直平分线上,
又由①知,OB=OC,
∴BC的中垂线同时也是∠BOC的平分线,
∴设点P的坐标为(a,a),
又点P在抛物线y=﹣x2+2x+3上,于是有a=﹣a2+2a+3,
∴a2﹣a﹣3=0,
解得,,
∴点P的坐标为:或,
若点P的坐标为,此时点P在第一象限,
在Rt△OMP和Rt△BOC中,MP=OM=,
OB=OC=3,
S△BPC=S四边形BOCP﹣S△BOC=2S△BOP﹣S△BOC,
=,
若点P的坐标为,此时点P在第三象限,
则S△BPC=S△BOP+S△COP+S△BOC=,
=,
科目:初中数学 来源: 题型:
【题目】如图,放置的△OAB1,△B1A1B2,△B2A2B3,都是边长为2的等边三角形,边AO在Y轴上,点B1、B2、B3都在直线y=x上,则点A2019的坐标为__________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 A、B 均在小正方形的顶点上.
(1)在图中画出以 AB 为一腰的等腰△ABC,点 C 在小正方形顶点上,△ABC 为钝角三角形,且△ABC 的面积为;
(2)在图中画出以 AB 为斜边的直角三角形 ABD, 点 D在小正方形的顶点上,且 AD>BD;
(3)连接 CD,请你直接写出线段 CD 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2018次这样的变换得到的点A2018的坐标是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.
(1)求抛物线C函数表达式;
(2)若点M是位于直线AB上方抛物线上的一动点,当的面积最大时,求此时的面积S及点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).
(1)以点C为中心,把△ABC逆时针旋转90°,请在图中画出旋转后的图形△A′B′C,点B′的坐标为________;
(2)在(1)的条件下,求出点A经过的路径的长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.
(1)求证:∠FGC=∠AGD;
(2)若AD=6.
①当AC⊥DG,CG=2时,求sin∠ADG;
②当四边形ADCG面积最大时,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点(0,1),对称轴为直线x=﹣1,下列结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中,正确结论的个数为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com