精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的直径为,点在圆周上(异于),的平分线.

(1)求证:直线是⊙O的切线;

(2)若=3,,求的值.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)连接OC,证OCCD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OCAD,由于ADCD,那么OCCD,由此得证.

(2)根据直径所对的圆周角是直角得出∠ACB=90°,根据勾股定理求出AC=4,然后证出△ABC∽△ACD,利用相似三角形的对应边成比例列式解答即可.

试题解析:

(1)证明:连接OC

AC是∠DAB的角平分线,

∴∠DAC=∠BAC

又∵OAOC

∴∠OAC=∠OCA

∴∠DAC=∠OCA

OCAD

ADCD

OCCD

DC是⊙O的切线

(2):∵AB是⊙O直径,C在⊙O上,

∴∠ACB=90°,

又∵BC=3,AB=5,

∴由勾股定理得AC=4.

∵∠BAC=∠DAC,∠ACB=∠D= 90°,

∴△ABC∽△ACD

解得:AD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学家吴文俊院士非常重视古代数学家贾宪提出的从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)这一推论,他从这一推论出发,利用出入相补原理复原了《海岛算经》九题古证,根据图形可知他得出的这个推论指(

A. S矩形ABMNS矩形MNDCB. S矩形EBMFS矩形AEFN

C. S矩形AEFNS矩形MNDCD. S矩形EBMFS矩形NFGD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x0,k0)的图象经过线段BC的中点D.

(1)求k的值;

(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点PPRy轴于点R,作PQBC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, ,高 相交于点, ,且 .

(1)求线段 的长;

(2)动点 从点 出发,沿线段 以每秒 1 个单位长度的速度向终点 运动,动点 出发沿射线 以每秒 4 个单位长度的速度运动,两点同时出发,当点 到达 点时, 两点同时停止运动.设点 的运动时间为 秒,的面积为 ,请用含 的式子表示 ,并直接写出相应的 的取值范围;

(3)(2)的条件下,点 是直线上的一点且 .是否存在 值,使以点 为顶 点的三角形与以点 为顶点的三角形全等?若存在,请直接写出符合条件的 ; 若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司有AB两种型号的客车共20,它们的载客量、每天的租金如表所示.已知在20辆客车都坐满的情况下,共载客720.

A型号客车

B型号客车

载客量(/)

45

30

租金(/)

600

450

(1)AB两种型号的客车各有多少辆?

(2)某中学计划租用AB两种型号的客车共8,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600.

①求最多能租用多少辆A型号客车?

②若七年级的师生共有305,请写出所有可能的租车方案,并确定最省钱的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.

(1)求一次函数的解析式;

(2)根据图象直接写出的x的取值范围;

(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长ABDE的延长线交于点F.下列结论中:①ABC≌△EAD;②ABE是等边三角形;③AD=AF;④SABE=SCEF其中正确的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线y=﹣xx﹣2)(0≤x≤2)记为C1,它与x轴交于两点OA1C1A1旋转180°得到C2,交x轴于A2;将C2A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6若点P(11,m)在第6段抛物线C6m=_____

查看答案和解析>>

同步练习册答案