某批发商以40元/千克的成本价购入了某产品700千克,据市场预测,该产品的
销售价y(元/千克)与保存时间x(天)的函数关系为y=50+2x,但保存这批产品平均每天
将损耗15千克,且最多保存15天.另外,批发商每天保存该批产品的费用为50元.
(1)若批发商在保存该产品5天时一次性卖出,则可获利 元.
(2)如果批发商希望通过这批产品卖出获利10000元,则批发商应在保存该产品多少
天时一次性卖出?
科目:初中数学 来源: 题型:
图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②.其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN.我们把∠ANB叫做倾斜角.
(1)当倾斜角为45°时,求CN的长;
(2)按设计要求,倾斜角能小于30°吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,M、N分别AD、BC的中点,P、Q分别BM、DN
的中点.
(1)求证:四边形MPNQ是菱形;
(2)若AB=2,BC=4,求四边形MPNQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
利用表格中的数据,可求出+(4.123)2- 的近似值是(结果保留整数).
a | a2 |
|
|
17 | 289 | 4.123 | 13.038 |
18 | 324 | 4.243 | 13.416 |
19 | 361 | 4.359 | 13.784 |
A.3 | B.4 |
C.5 | D.6 |
查看答案和解析>>
科目:初中数学 来源: 题型:
反比例函数y= (k为常数,k≠0)的图象是双曲线.当k>0时,双曲线两个分支分别在
一、三象限,在每一个象限内,y随x的增大而减小(简称增减性);反比例函数的图象关于
原点对称(简称对称性).
这些我们熟悉的性质,可以通过说理得到吗?
【尝试说理】
我们首先对反比例函数y=(k>0)的增减性来进行说理.
如图,当x>0时.
在函数图象上任意取两点A、B,设A(x1,),B(x2,),
且0<x1< x2.
下面只需要比较和的大小.
—= .
∵0<x1< x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即< .
这说明:x1< x2时,>.也就是:自变量值增大了,对应的函数值反而变小了.
即:当x>0时,y随x的增大而减小.
同理,当x<0时,y随x的增大而减小.
(1)试说明:反比例函数y= (k>0)的图象关于原点对称.
【运用推广】
(2)分别写出二次函数y=ax2 (a>0,a为常数)的对称性和增减性,并进行说理.
对称性: ;
增减性: .
说理:
(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=— 时函数取得最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数
据进行处理(设所测数据是正整数),得频数分布表如下:
组 别 | 噪声声级分组 | 频 数 | 频 率 |
1 | 44.5——59.5 | 4 | 0.1 |
2 | 59.5——74.5 | 8 | 0.2 |
3 | 74.5——89.5 | 10 | 0.25 |
4 | 89.5——104.5 | b | c |
5 | 104.5——119.5 | 6 | 0.15 |
合 计 | 40 | 1.00 |
则第四小组的频率c =_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com