精英家教网 > 初中数学 > 题目详情
4、若x0是一元二次方程,ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac与平方式M=(2ax0+b)2的大小关系是(  )
分析:首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.
解答:解:把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,
∵(2ax0+b)2=4a2x02+4abx0+b2
∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,
∴M=△.
故选B.
点评:本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若b=2
ac
,则方程ax2+bx+c=0一定有两个相等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程x2-bx+ac=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,则b2-4ac=(2ax0+b)2,其中正确的(  )
A、只有①②③B、只有①②④
C、①②③④D、只有③④

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若b=2数学公式,则方程ax2+bx+c=0一定有两个相等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程x2-bx+ac=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,则b2-4ac=(2ax0+b)2,其中正确的


  1. A.
    只有①②③
  2. B.
    只有①②④
  3. C.
    ①②③④
  4. D.
    只有③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若b=2
ac
,则方程ax2+bx+c=0一定有两个相等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程x2-bx+ac=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,则b2-4ac=(2ax0+b)2,其中正确的(  )
A.只有①②③B.只有①②④C.①②③④D.只有③④

查看答案和解析>>

科目:初中数学 来源:西青区二模 题型:单选题

若x0是一元二次方程,ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac与平方式M=(2ax0+b)2的大小关系是(  )
A.△>MB.△=MC.△<MD.不能确定

查看答案和解析>>

同步练习册答案