精英家教网 > 初中数学 > 题目详情

【题目】如图,将长方形ABCD沿对角线BD折叠,点C落在点E处,BEAD于点F,已知∠BDC=62°,则∠DFE的度数为(

A. 62°B. 56°C. 31°D. 28°

【答案】B

【解析】

先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=FDB=28°,接着根据折叠的性质得∠FBD=CBD=28°,然后利用三角形外角性质计算∠DFE的度数

∵四边形ABCD为矩形,

ADBC,ADC=90°

∵∠FDB=90°BDC=90°62°=28°

ADBC

∴∠CBD=FDB=28°

∵矩形ABCD沿对角线BD折叠,

∴∠FBD=CBD=28°

∴∠DFE=FBD+FDB=28°+28°=56°.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=ADBC=DCACBD相交于点O,则①CA平分∠BCD;②ACBD;③∠ABC=ADC=90°;④四边形ABCD的面积为ACBD.上述结论正确的个数是(  )

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB6厘米,AD8厘米.延长BC到点E,使CE3厘米,连接DE.动点PB点出发,以2厘米/秒的速度向终点C匀速运动,连接DP.设运动时间为t秒,解答下列问题:

(1)t为何值时,△PCD为等腰直角三角形?

(2)设△PCD的面积为S(平方厘米),试确定St的关系式;

(3)t为何值时,△PCD的面积为长方形ABCD面积的

(4)若动点P从点B出发,以2厘米/秒的速度沿BCCDDA向终点A运动,是否存在某一时刻t,使△ABP和△DCE全等?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,

1)问应将每件售价定为多少元时,才能使每天利润为640元且成本最少?

2)问应将每件售价定为多少元时,才能使每天利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3BC=4MN在对角线AC上,且AM=CNEF分别是ADBC的中点.

1)求证:△ABM≌△CDN

2)点G是对角线AC上的点,∠EGF=90°,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空并完成以下证明:

已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.

求证:AB∥CD,∠E=∠F.

证明:∵∠BAP+∠APD=180°,(已知)

∴AB∥   .(   

∴∠BAP=   .(   

∵∠1=∠2,(已知)

∠3=   ﹣∠1,

∠4=   ﹣∠2,

∴∠3=   (等式的性质)

∴AE∥PF.(   

∴∠E=∠F.(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,垂足为直线上一动点(不与点重合),在的右侧作,使得,连接

1)求证:

2)当在线段上时

求证:

,

3)当CEAB时,若△ABD中最小角为20°,试探究∠ADB的度数(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中是圆弧形拱桥,某天测得水面,此时圆弧最高点距水面

)确定圆弧所在圆的圆心.(尺规作图,保留作图痕迹)

)求圆弧所在圆的半径.

)水面上升,水面宽__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,在一块宽为12m,长为20m的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为180m2求道路的宽;

(2)现在对该矩形区域进行改造,如图2,在正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的若道路与观赏亭的面积之和是矩形面积的求道路的宽

查看答案和解析>>

同步练习册答案