精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.

(1)证明△AMF是等腰三角形;
(2)当EG过点D时(如图(3)),求x的值;
(3)将y表示成x的函数,并求y的最大值.
(1)由条件EF∥AD就可以得出∠A=∠EFB,∠GFE=∠AMF,由△GFE与△BFE关于EF对称可以得出∠GFE=∠BFE,就可以得出∠A=∠AMF,从而得出结论。
(2)
(3)

分析:(1)由条件EF∥AD就可以得出∠A=∠EFB,∠GFE=∠AMF,由△GFE与△BFE关于EF对称可以得出∠GFE=∠BFE,就可以得出∠A=∠AMF,从而得出结论。
(2)当EG过点D时在Rt△EDC中由勾股定理建立方程求出其解即可。
(3)分情况讨论当点G不在梯形外时和点G在梯形之外两种情况求出x的值就可以求出y与x之间的函数关系式,在自变量的取值范围内就可以求出相应的最大值,从而求出结论。
解:(1)证明:如图(1),∵EF∥AD,∴∠A=∠EFB,∠GFE=∠AMF。
∵△GFE与△BFE关于EF对称,∴△GFE≌△BFE。∴∠GFE=∠BFE。
∴∠A=∠AMF。∴△AMF是等腰三角形。
(2)如图,作DQ⊥AB于点Q,

∴∠AQD=∠DQB=90°。∴AB∥DC。∴∠CDQ=90°。
又∵∠B=90°,∴四边形CDQB是矩形。
∴CD=QB=2,QD=CB=6,∴AQ=10﹣2=8。
在Rt△ADQ中,由勾股定理得AD=10。
∴tan∠A=。∴
如图3,∵EB=x,∴FB=x,CE=6﹣x。∴AF=MF=10﹣x。
∴GM=。∴GD=。∴DE=
在Rt△CED中,由勾股定理得,解得:
∴当EG过点D时
(3)当点G在梯形ABCD内部或边AD上时,
当点G在边AD上时,易求得x=
∴当0<x时,
∴当x=时,y最大值为
当点G在梯形ABCD外时,
∵△GMN∽△GFE,∴,即
整理,得
由(2)知,,∴当时,

当x=5时,y最大值为
,∴当x=5时,y最大值为
综上所述,y关于x的函数为,y最大值为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是
A.70°B.80°C.65°D.60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:                                     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图,直线l、l分别与直线l、l相交,∠1=76°,∠2=104°,∠3=68°,求∠4的度数.

(2)如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对此结论进行证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AD//BC,,AC平分,求的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两条公路相交,在A、B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点。
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线被直线所截,若,∠1=40°,∠2=70°,则∠3=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为__________.

查看答案和解析>>

同步练习册答案