A. | 4 | B. | 4$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 8 |
分析 根据旋转的性质知:旋转角度是90°,根据旋转的性质得出AP=AP′=4,即△PAP′是等腰直角三角形,腰长AP=4,则可用勾股定理求出斜边PP′的长.
解答 解:连接PP′,
∵△ABP绕点A逆时针旋转后与△ACP′重合,
∴△ABP≌△ACP′,
即线段AB旋转后到AC,
∴旋转了90°,
∴∠PAP′=∠BAC=90°,AP=AP′=4,
∴PP′=$\sqrt{A{P}^{2}+AP{′}^{2}}$=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$,
故选B.
点评 本题考查旋转的性质和直角三角形的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 96+x=$\frac{1}{3}$(72-x) | B. | $\frac{1}{3}$(96+x)=72-x | C. | $\frac{1}{3}$(96-x)=72-x | D. | $\frac{1}{3}$×96+x=72-x |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 60° | B. | 55° | C. | 50° | D. | 45° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com