精英家教网 > 初中数学 > 题目详情
15.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP逆时针旋转后,与△ACP′重合,如果AP=4,那么P,P′两点间的距离为(  )
A.4B.4$\sqrt{2}$C.4$\sqrt{3}$D.8

分析 根据旋转的性质知:旋转角度是90°,根据旋转的性质得出AP=AP′=4,即△PAP′是等腰直角三角形,腰长AP=4,则可用勾股定理求出斜边PP′的长.

解答 解:连接PP′,
∵△ABP绕点A逆时针旋转后与△ACP′重合,
∴△ABP≌△ACP′,
即线段AB旋转后到AC,
∴旋转了90°,
∴∠PAP′=∠BAC=90°,AP=AP′=4,
∴PP′=$\sqrt{A{P}^{2}+AP{′}^{2}}$=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$,
故选B.

点评 本题考查旋转的性质和直角三角形的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.张师傅在铺地板时发现,用8块大小一样的小长方形瓷砖恰好可以拼成一个大的长方形,如图1.然后,他用这8块瓷砖又拼出一个正方形,如图2,中间恰好空出一个边长为1的小正方形(阴影部分).
(1)请你根据图(1)写出小长方形的长与宽之比=5:3.
(2)请你根据图(2)列出方程,求出小长方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如果$\frac{x+y}{y}$=$\frac{7}{4}$,那么$\frac{x}{y}$的值是$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列方程中,解为x=2的方程是(  )
A.x+2=0B.2+3x=8C.3x-1=2D.4-2x=1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知$\frac{c}{4}$=$\frac{b}{5}$=$\frac{a}{6}$≠0,则$\frac{b+c}{a}$的值为(  )
A.1B.$\frac{3}{2}$C.2D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若双曲线y=$\frac{1-k}{x}$的图象在第一、三象限,则k的取值范围为(  )
A.k>0B.k<0C.k>1D.k<1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的$\frac{1}{3}$,应从乙队调    多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是(  )
A.96+x=$\frac{1}{3}$(72-x)B.$\frac{1}{3}$(96+x)=72-xC.$\frac{1}{3}$(96-x)=72-xD.$\frac{1}{3}$×96+x=72-x

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是(  )
A.60°B.55°C.50°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F,若$\frac{AB}{BC}$=$\frac{1}{2}$,则$\frac{DE}{DF}$的值是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

同步练习册答案