精英家教网 > 初中数学 > 题目详情
(2012•合川区模拟)如图,二次函数y=-x2+bx+c的图象与x轴交于点B(-3,0),与y轴交于点C(0,-3).
(1)求直线BC及二次函数的解析式;
(2)设抛物线的顶点为D,与x轴的另一个交点为A.点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.
分析:(1)根据待定系数法求直线BC的解析式即可;把点B、C的坐标代入二次函数,利用待定系数法求函数解析式解答;
(2)根据抛物线解析式求出顶点D的坐标,再根据二次函数的对称性求出点A的坐标,连接AD,然后求出∠ADP=∠ABC=45°,然后证明△ADP和△ABC相似,根据相似三角形对应边成比例列出比例式求出PD的长度,从而得解;
(3)连接BD,利用勾股定理求出BD、BC的长度,再求出∠CBD=90°,然后根据∠BCD与∠ACO的正切值相等可得∠BCD=∠ACO,从而得到∠OCA与∠OCD的和等于∠BCO,是45°.
解答:解:(1)设直线BC的解析式为y=kx+m,
∵点B(-3,0),点C(0,-3),
-3k+m=0
m=-3

解得
k=-1
m=-3

所以,直线BC的解析式为y=-x-3,
∵二次函数y=-x2+bx+c的图象经过点B(-3,0),点C(0,-3),
-9-3b+c=0
c=-3

解得
b=-4
c=-3

∴二次函数的解析式为y=-x2-4x-3;

(2)∵y=-x2-4x-3=-(x+2)2+1,
∴抛物线的顶点D(-2,1),对称轴为x=-2,
∵A、B关于对称轴对称,点B(-3,0),
∴点A的坐标为(-1,0),
AB=-1-(-3)=-1+3=2,
BC=
32+32
=3
2

连接AD,则AD=
12+[-1-(-2)]2
=
2

tan∠ADP=
1
(-1)-(-2)
=1,
∴∠ADP=45°,
又∵B(-3,0),C(0,-3),
∴△OAC是等腰直角三角形,
∴∠ABC=45°,
∴∠ADP=∠ABC=45°,
又∵∠APD=∠ACB,
∴△ADP∽△ABC,
DP
BC
=
AD
AB

DP
3
2
=
2
2

解得DP=3,
点P到x轴的距离为3-1=2,
点P的坐标为(-2,-2);

(3)连接BD,∵B(-3,0),D(-2,1),
∴tan∠DBA=
1
-2-(-3)
=1,
∴∠DBA=45°,
根据勾股定理,BD=
12+[-2-(-3)]2
=
2

又∵∠ABC=45°,
∴∠DBC=45°×2=90°,
∴tan∠BCD=
BD
BC
=
2
3
2
=
1
3

又∵tan∠OCA=
AO
CO
=
1
3

∴∠BCD=∠OCA,
∴∠OCA+∠OCD=∠BCD+∠OCD=∠OCB,
∵B(-3,0),C(0,-3),
∴△OAC是等腰直角三角形,
∴∠OCB=45°,
即∠OCA与∠OCD两角和是45°.
点评:本题是对二次函数的综合考查,主要利用了待定系数法求函数解析式,二次函数的对称性,解直角三角形,勾股定理,以及相似三角形的判定与性质,利用数据的特殊性求出等腰直角三角形得到45°角,然后找出相等的角是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•合川区模拟)下列计算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•合川区模拟)如图,规格为60cm×60cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45cm,现准备从五边形地砖ABCDE上截出一个面积为S的矩形地砖PMBN,则S最大值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•合川区模拟)已知关于x的方程
2
x-1
-
a+1
x+2
=
3a
(x-1)(x+2)
只有整数解,则整数a的值为
-2,0或4
-2,0或4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•合川区模拟)解方程组:
2x+y=5
4x-3y=15

查看答案和解析>>

同步练习册答案