精英家教网 > 初中数学 > 题目详情
29、如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.
(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由;
(2)试求∠AFE的度数.
分析:(1)先延长AF、DE相交于点G,根据两直线平行同旁内角互补可得∠CDE+∠G=180°.又已知∠CDE=∠BAF,等量代换可得∠BAF+∠G=180°,根据同旁内角互补,两直线平行得AB∥DE;
(2)先延长BC、ED相交于点H,由垂直的定义得∠B=90°,再由两直线平行,同旁内角互补可得∠H+∠B=180°,所以∠H=90°,最后可结合图形,根据邻补角的定义求得∠AFE的度数.
解答:解:(1)AB∥DE.
理由如下:
延长AF、DE相交于点G,
∵CD∥AF,
∴∠CDE+∠G=180°.
∵∠CDE=∠BAF,
∴∠BAF+∠G=180°,
∴AB∥DE;

(2)延长BC、ED相交于点H.
∵AB⊥BC,
∴∠B=90°.
∵AB∥DE,
∴∠H+∠B=180°,
∴∠H=90°.
∵∠BCD=124°,
∴∠DCH=56°,
∴∠CDH=34°,
∴∠G=∠CDH=34°.
∵∠DEF=80°,
∴∠EFG=80°-34°=46°,
∴∠AFE=180°-∠EFG
=180°-46°
=134°.
点评:两直线的位置关系是平行和相交.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索因”的思维方式与能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=120°,∠E=80°,试求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河西区一模)如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,则∠F=
134
134
度.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

如图,CD∥AF,,试求的度数.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.
(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由;
(2)试求∠AFE的度数.

查看答案和解析>>

同步练习册答案