精英家教网 > 初中数学 > 题目详情

【题目】我们把对角线互相垂直的四边形叫做垂美四边形.

(1)(概念理解)在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是___________.

(2)(性质探究)如图2,试探索垂美四边形ABCD的两组对边AB,CD与BC ,AD之间的数量关系,写出证明过程。

(3)(问题解决)如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外做正方形ACFG和正方形ABDE,连接CE,BG,GE, 已知AC=,BC=1 求GE的长.

【答案】菱形、正方形

【解析】1)根据垂美四边形的定义进行判断即可;

(2)根据垂直的定义和勾股定理解答即可;

(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.

(1)菱形的对角线互相垂直,符合垂美四边形的定义,

正方形的对角线互相垂直,符合垂美四边形的定义,

而平行四边形、矩形的对角线不一定垂直,不符合垂美四边形的定义,

故答案为:菱形、正方形;

(2)猜想结论:AD2+BC2=AB2+CD2,证明如下:

如图2,连接AC、BD,交点为E,则有ACBD,

ACBD,

∴∠AED=AEB=BEC=CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2

AB2+CD2=AE2+BE2+CE2+DE2

AD2+BC2=AB2+CD2

(3)连接CG、BE,ABCE的交点为M

∵∠CAG=BAE=90°,

∴∠CAG+BAC=BAE+BAC,即∠GAB=CAE,

又∵AG=AC,AB=AE,

GAB≌△CAE(SAS),

∴∠ABG=AEC,

又∠AEC+AME=90°,AME=BMC,

∴∠ABG+BMC=90°,即CEBG,

∴四边形CGEB是垂美四边形,

由(2)得,CG2+BE2=CB2+GE2

AC=,BC=1 AB=2,

,

,

,

GE的长是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y= 的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知|a+3|与(b+1)2互为相反数,a、b分别对应数轴上的点A、B.

(1)a、b的值.

(2)数轴上原点右侧存在点C,设甲、乙、丙三个动点分别从A、B、C三点同时运动,甲、乙向数轴正方向运动,丙向数轴负方向运动,甲、乙、丙运动速度分别为1、、2(单位长度每秒),若它们在数轴上某处相遇,请求出C点对应的数是多少?

(3)运用(2)中所求C点对应的数,若甲、乙、丙出发地及速度大小均不变,同时向数轴负方向运动,问丙先追上谁?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组 有解,且使关于x的一元一次方程 +1= 的解为负数的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm, AB=8cm, 则EC的长为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD中,∠ABCBCD的平分线分别交AD于点EFBECF相交于点G

(1)求证:BECF

(2)若AB=aCF=b,写出求BE的长的思路

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).

(1)求看台最低点A到最高点B的坡面距离;
(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点Px轴,y轴的垂线,分别交直线l于点MN,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).

(1)当直线l的表达式为y=x时,

①在点ABC中,直线l的近距点是

②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;

(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)-16-(-1+)÷3×[2-(-4)2]

(2)解方程:-=-1

(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-

查看答案和解析>>

同步练习册答案