精英家教网 > 初中数学 > 题目详情
18.如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G落在点A、E之间,连接EF、CF.则以下四个结论:
①CG⊥AE;
②△CDF≌△EBC;
③∠CDF=∠EAF;
④△ECF是等边三角形.
其中一定正确的是②③④.(把正确结论的序号都填上)

分析 根据等边三角形的性质,只有∠ABC=150°时,CG⊥AE.根据平行四边形的对角相等,等边三角形的每一个角都是60°表示出∠CDF=∠EBC,平行四边形的对边相等,等边三角形的三条边都相等可得CD=EB,DE=BC,然后利用“边角边”证明△CDF和△EBC全等,判定②正确;再表示出∠EAF,可得∠CDF=∠EAF,判定③正确;同理求出△CDF和△EAF全等,根据全等三角形对应边相等可得CE=CF=EF,判定△ECF是等边三角形,判定④正确;

解答 解:在等边三角形ABE中,
∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段
∴如果CG⊥AE,则G是AE的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG⊥AE不能求证,故①错误;
∵△ABE、△ADF是等边三角形
∴FD=AD,BE=AB
∵AD=BC,AB=DC
∴FD=BC,BE=DC
∵∠B=∠D,∠FDA=∠ABE
∴∠CDF=∠EBC
∴△CDF≌△EBC,故②正确;

∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°-∠CDA)=300°-∠CDA,
∠FDC=360°-∠FDA-∠ADC=300°-∠CDA,
∴∠CDF=∠EAF,故③正确;
同理可得:∠CBE=∠EAF=∠CDF,
∵BC=AD=AF,BE=AE,
∴△EAF≌△EBC,
∴∠AEF=∠BEC,
∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,
∴∠FEC=60°,
∵CF=CE,
∴△ECF是等边三角形,故④正确;
正确的有②③④,
故答案为:②③④.

点评 本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.一元一次不等式的解集在数轴上表示为如图,则它的解集是(  )
A.x≥-2B.x>-2C.x≤-2D.x<-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,点A表示的实数是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$-\sqrt{5}$D.$-\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)若关于x,y的二元一次方程组$\left\{\begin{array}{l}{2x+ay=16}\\{x-2y=0}\end{array}\right.$的解为正整数,则正整数a的值为4或12.
(2)已知a,b均为正数,且a+b=2,则m=$\sqrt{{a}^{2}+4}$+$\sqrt{{b}^{2}+1}$的最小值为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.在数轴上,点A,O,B分别表示-16,0,14,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.若点P,Q,O三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为$\frac{18}{7}$、$\frac{31}{4}$、$\frac{76}{7}$或$\frac{74}{3}$秒.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知一个直角三角形的两条边长分别是6和8,则第三边长是(  )
A.10B.8C.2$\sqrt{7}$D.10或2$\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:AB=BC,∠ABC=90°.将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.点C关于直线BD的对称点为E,连接AE,CE.
(1)如图,①补全图形;②求∠AEC的度数;
(2)若AE=$\sqrt{2}$,CE=$\sqrt{3}$-1,请写出求α度数的思路.(可以不写出计算结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4-x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为20°.

查看答案和解析>>

同步练习册答案