精英家教网 > 初中数学 > 题目详情
(2013•徐州模拟)如图,在平面直角坐标系xOy中,已知二次函数y=ax2+2ax+c的图象与y轴交于点C(0,3),与x轴交于A、B两点,点B的坐标为(-3,0)
(1)求二次函数的解析式及顶点D的坐标;
(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点M的坐标;
(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?并求出此时点P的坐标.
分析:(1)抛物线的解析式中只有两个待定系数,因此只需将点B、C的坐标代入其中求解即可.
(2)先画出相关图示,连接OD后发现:S△OBD:S四边形ACDB=2:3,因此直线OM必须经过线段BD才有可能符合题干的要求;设直线OM与线段BD的交点为E,根据题干可知:△OBE、多边形OEDCA的面积比应该是1:2或2:1,即△OBE的面积是四边形ACDB面积的
1
3
2
3
,所以先求出四边形ABDC的面积,进而得到△OBE的面积后,可确定点E的坐标,首先求出直线OE(即直线OM)的解析式,联立抛物线的解析式后即可确定点M的坐标(注意点M的位置).
(3)此题必须先得到关于△CPB的面积函数表达式,然后根据函数的性质来求出△CPB的面积最大值以及对于的点P坐标;通过图示可发现,△CPB的面积可由四边形OCPB的面积减去△OCB的面积求得,首先设出点P的坐标,四边形OCPB的面积可由△OCP、△OPB的面积和得出,据此思路来解即可.
解答:解:(1)由题意,得:
c=3
9a-6a+c=0.

解得:
a=-1
c=3.

所以,所求二次函数的解析式为:y=-x2-2x+3,顶点D的坐标为(-1,4).

(2)连接OD,如右图;
易求:S△OBD=
1
2
×3×4=6,S四边形ACDB=S△ABD+S△ACD=
1
2
×3×4+
1
2
×3×2=9.
因此直线OM必过线段BD,易得直线BD的解析式为y=2x+6;
设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.
①当S△OBE=
1
3
×9=3时,易得E点坐标(-2,2),
则直线OE的解析式为y=-x,
设M点坐标(x,-x),联立抛物线的解析式有:
-x=-x2-2x+3,
解得:x1=
-1-
13
2
,x2=
-1+
13
2
(舍去),
∴M(
-1-
13
2
1+
13
2
).
②当S△OBE=
2
3
×9=6时,同理可得M点坐标.
∴M点坐标为(-1,4).

(3)连接OP,设P点的坐标为(m,n),因为点P在抛物线上,所以n=-m2-2m+3,
所以S△CPB=S△CPO+S△OPB-S△COB
=
1
2
OC•(-m)+
1
2
OB•n-
1
2
OC•OB
=-
3
2
m+
3
2
n-
9
2

=
3
2
(n-m-3)
=-
3
2
(m2+3m)
=-
3
2
(m+
3
2
2+
27
8

因为-3<m<0,所以当m=-
3
2
时,n=
15
4
.△CPB的面积有最大值
27
8

所以当点P的坐标为(-
3
2
15
4
)时,△CPB的面积有最大值,且最大值为
27
8
点评:此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)题中,一定先要探究一下点M的位置,以免出现漏解的情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•徐州模拟)若圆锥的高为8,底面半径为6,则圆锥的侧面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=
2
5
2
5

(2)求B、C两点的坐标及图2中OF的长;
(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)分解因式:9a2-b2=
(3a+b)(3a-b)
(3a+b)(3a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)
1
4
的倒数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.
(1)求港口A到海岛B的距离;
(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?

查看答案和解析>>

同步练习册答案