精英家教网 > 初中数学 > 题目详情
1.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=$\sqrt{96}$,则DF的长为      (  )
A.2B.4C.$\sqrt{6}$D.$2\sqrt{3}$

分析 根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可.

解答 解:∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE,
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,$\left\{\begin{array}{l}{ED=EG}\\{EF=EF}\end{array}\right.$,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
设DF=x,则BF=6+x,CF=6-x,
在Rt△BCF中,($\sqrt{96}$)2+(6-x)2=(6+x)2
解得x=4.
故选:B.

点评 此题是折叠问题,主要考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.是一道典型的折叠问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知,如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°,P是△ABC内部一点,且PC=AC,∠PCA=120°-α.
(1)用含α的代数式表示∠APC,得∠APC=30°+$\frac{1}{2}α$;
(2)求证:∠BAP=∠PCB;
(3)求∠PBC的度数;
(4)若PA=PB,试猜想△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=$\sqrt{2}$;⑤S四边形CDEF=$\frac{5}{2}$S△ABF,其中正确的结论有①②③⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在△ABC中,AB=AC,BE=CM,BM=CF,∠EMF=50°,则∠A=80度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是4$\sqrt{3}$-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(-2,0),
B(4,0)与y轴交于点C.
(Ⅰ)求抛物线的解析式及其顶点D的坐标;
(Ⅱ)求△BCD的面积;
(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,P为边长为6的正方形ABCD的边BC上一动点(P与B、C不重合),Q在CD上,且CQ=BP,连接AP、BQ,将△BQC沿BQ所在的直线翻折得到△BQE,延长QE交BA的延长线于点F.
(1)试探究AP与BQ的数量与位置关系,并证明你的结论;
(2)当E是FQ的中点时,求BP的长;
(3)若BP=2PC,求QF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了200次球,发现有140次摸到红球,估计这个口袋中红球的数量为14个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F.
(1)当点E是线段BC的中点时,求证:AF=AB+CF.
(2)当∠BAE=30°时,求证:AF=2AB-2CF;
(3)当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明.
 

查看答案和解析>>

同步练习册答案