精英家教网 > 初中数学 > 题目详情
已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.
分析:(1)首先表示出方程①的根的判别式,若方程有两个实数根,那么判别式应大于等于0,结合非负数的性质进行证明即可.
(2)可利用十字相乘法将方程左边进行因式分解,即可得到方程必有一根为1.
(3)由(2)可得x1的表达式,即x1=
m+n
m
,若m+n=2,且x1为整数,那么m可取1或2,然后结合(1)(2)的结论将不合题意的m值舍去,即可确定m的值,进而可得抛物线的解析式.
(4)首先根据已知条件确定出点C的坐标;然后设出平移后的点C坐标,由于此时C点位于抛物线的图象上,可将其代入抛物线的解析式中,即可确定出平移后的点C坐标,进而可得平移的距离.
解答:证明:(1)∵a=m,b=-(2m+n),c=m+n
∴△=b2-4ac=[-(2m+n)]2-4m(m+n)
=4m2+4mn+n2-4m2-4mn
=n2(1分)
∵无论n取何值时,都有n2≥0
∴△≥0
∴方程①有两个实数根.(2分)

(2)∵原方程可化为:(mx-m-1)(x-1)=0,(3分)
x1=
m+n
m
x2=1

∴方程①有一个实数根为1.(4分)

(3)由题意可知:方程①的另一个根为x1=
m+n
m

∵m+n=2,m为正整数且方程①有两个不相等的整数根,
∴m=1,
∴二次函数的解析式:y=x2-3x+2.(5分)

(4)由题意可知:AB=3,
由勾股定理得:AC=4
∴C点的坐标为(1,4)
当△ABC沿x轴向右平移,此时设C点的坐标为(a,4)(6分)
∵C在抛物线上,
4=a2-3a+2
a2-3a-2=0

a=
17
2
,舍去负值,
a=
3+
17
2

∴△ABC平移的距离:
3+
17
2
-1=
1+
17
2
.(7分)
点评:此题考查了二次函数与一元二次方程的关系、根的判别式、二次函数解析式的确定以及函数图象上点的坐标特征,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数.
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

同步练习册答案