【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;
(2)求售价x的范围;
(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
【答案】(1)月销售量y(台)与售价x(元/台)之间的函数关系式为y=﹣5x+2200;
(2)x的范围是300≤x≤350;
(3)售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.
【解析】试题分析:(1)、销售量=200+50×(降价的数量÷10)得出答案;(2)、根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,得出不等式组,从而得出x的取值范围;(3)、根据总利润=单件利润×数量得出函数关系式,然后根据二次函数的性质得出最大值.
试题解析:(1)、根据题中条件销售价每降低10元,月销售量就可多售出50台,
则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,
化简得:y=-5x+2200;
(2)、根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台, 则x≥300且5x+2200≥450
解得:300≤x≤350.
所以y与x之间的函数关系式为:y=-5x+2200(300≤x≤350);
(3)、W=(x-200)(-5x+2200), 整理得:W=-5+72000.
∵x=320在300≤x≤350内, ∴当x=320时,最大值为72000,
即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x﹣4与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过P作PD∥AC,交BC于点D,连接CP.
(1)直接写出A、B、C的坐标;
(2)求抛物线y=﹣x﹣4的对称轴和顶点坐标;
(3)求△PCD面积的最大值,并判断当△PCD的面积取最大值时,以PA、PD为邻边的平行四边形是否为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:
考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线互相垂直的四边形
D.对角线相等的四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线互相垂直的四边形
D.对角线相等的四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD()
∴∠2=∠CGD(等量代换)
∴CE∥BF()
∴∠=∠BFD()
又∵∠B=∠C(已知)
∴∠BFD=∠B(等量代换)
∴AB∥CD()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com