精英家教网 > 初中数学 > 题目详情
19.学校有甲乙两个鼓号队,各由5名队员组成,且甲乙两队的平均身高分别是160cm,155cm,甲对队员身高的方差是1.2,乙队队员身高的方差是120,则甲队身高较整齐.(填“甲”或“乙”)

分析 根据方差的性质比较解答即可.

解答 解:∵1.2<120,
∴甲队队员身高的方差是小于乙队队员身高的方差,
∴甲队身高较整齐.
故答案为:甲.

点评 本题考查的是方差的性质,掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.若1-$\frac{4}{x}$+$\frac{4}{{x}^{2}}$=9,则$\frac{2}{x}$的值是(  )
A.4B.-2C.4或-2D.±3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.因式分解:
(1)4(a-b)2-16(a+b)2
(2)81a4-b4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.袋中装有除颜色外完全相同的a个白球、b个红球、c个黄球,则任意摸出一个球是黄球的概率为(  )
A.$\frac{c}{a+b+c}$B.$\frac{c}{a+b}$C.$\frac{a+c}{a+b+c}$D.$\frac{a+b}{c}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不等式组$\left\{\begin{array}{l}x+1<2\\-2x<2\end{array}\right.$的解集为-1<x<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.列一元一次方程解应用问题:
一个蓄水池装有甲、乙两个进水管和丙一个出水管,单独开放甲管3小时可注满一池水,单独开放乙管6小时可注满一池水,单独开放丙管4小时可放尽一池水.
(1)若同时开放甲、乙、丙三个水管,几小时可注满水池?
(2)若甲管先开放1小时,而后同时开放乙、丙两个水管,则共需几小时可注满水池?
(3)若甲管先开放1小时后关闭,而后同时开放乙、丙两个水管,能注满水池吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下列材料,完成相应学习任务:
                                                        四点共圆的条件
    我们知道,过任意一个三角形的三个顶点能作一个圆,过任意一个四边形的四个顶点能作一个圆吗?小明经过实践探究发现:过对角互补的四边形的四个顶点能作一个圆,下面是小明运用反证法证明上述命题的过程:
已知:在四边形ABCD中,∠B+∠D=180°.
求证:过点A、B、C、D可作一个圆.
证明:如图(1),假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆外,设AD与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
    如图(2)假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆内,设AD的延长线与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠ADCA=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.
    因此得到四点共圆的条件:过对角互补的四边形的四个顶点能作一个圆.
学习任务:
(1)材料中划线部分结论的依据是圆的内接四边形对角互补.
(2)证明过程中主要体现了下列哪种数学思想:D(填字母代号即可)
            A、函数思想   B、方程思想   C、数形结合思想   D、分类讨论思想
(3)如图(3),在四边形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,则求∠ADB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AB为⊙O的直径,弦CD⊥AB,点E为垂足,点F为$\widehat{BC}$的中点,连接DA,DF,DF交AB于点G.

(1)如图1,求证:∠AGD=∠ADG;
(2)如图2,连接AF交CE于点H,连接HG,求证:CH=HG;
(3)如图3,在(2)的条件下,过点O作OP⊥AD,点P为垂足,若OP=BG,DG=4,求HG长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.Rt△ABC中,∠C=90°,点D、E是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在线段AB上,如图(1),∠α=50°,则∠1+∠2=140°
(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α
(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
(4)若点P运动到△ABC形外,如图(4),则∠α、∠1、∠2之间的关系为:∠2=90°+∠1-α.

查看答案和解析>>

同步练习册答案