解:(1)∵y=
x
2-mx+
m
2=
(x
2-2mx)+
m
2=
(x-m)
2,
∴顶点为(m,0);
(2)∵m=
k=2,
∴k=4,
∴y=
x
2-2x+2;
y=
,
如图1,抛物线对称轴为x=2,
∴点P(2,0).∴Q(2,2),
连结OQ,∵OP=PQ=2,
∴△OPQ是等腰直角三角形;
(3)①如图2,
∵正方形OABC,顶点A(2,0),B(2,2),
∴OA=AB=BC=2.
∵M为BC中点,
∴CM=1,M(1,2).
∴y=
∵S
△ABQ=4S
△APQ∴
AB•AP=4×
AP•PQ,即AB=4PQ,
∴PQ=
AB=
×2=
,
∴点Q的纵坐标为
或-
(负值舍去),
∴P(4,0),代入y=
x
2-mx+
m
2解得:m=4,
∴抛物线解析式为y=
x
2-4x+8.
将B(2,2)代入y=
x
2-4x+8,成立.
∴当M为BC边的中点时,抛物线能经过点B,
(其它方法可酌情给分)
②有可能
如图3所示,当△OMN为等边三角形时,∠MON=60°,OM=ON,
在Rt△COM和Rt△AON中
,
∴Rt△COM≌Rt△AON,
∴∠COM=∠AON,
又∵∠COA=90°,∴∠COM+∠AON=30°,
∴∠COM=∠AON=15°.
作线段ON的垂直平分线,交x轴于点D,连结DN,
则DO=DN.
∴∠DNO=∠DON=15°,∠DNA=30°.
设N(2,t),则DO=DN=2t,AD=
t.
∴OA=DO+DA=2t+
t=2,
解得:t=4-2
,
∴N(2,4-2
),
∴k=2(4-2
)=8-4
,
∴反比例函数解析式为y=
,
由①知,点Q的纵坐标为
或-
.
当y=
时,如图4,
=
,
解得:x=16-8
,
即m=16-8
,
∴m+2k=16-8
+2(8-4
)=32-16
,
当y=-
时,如图5,
=-
,
解得:x=-16+8
,
即m=-16+8
,
∴m+2k=-16+8
+2(8-4
)=0.
分析:(1)利用配方法求出顶点坐标即可;
(2)利用m=
k=2得出k的值,进而得出P,Q点坐标,即可得出△OPQ是等腰直角三角形;
(3)①根据S
△ABQ=4S
△APQ得出
AB•AP=4×
AP•PQ,即AB=4PQ,进而得出点Q的纵坐标为
或-
(负值舍去),再求出m的值,将B点代入即可;
②首先判断得出Rt△COM≌Rt△AON,进而得出∠DNO=∠DON=15°,∠DNA=30°,求出N点坐标,得出反比例函数解析式,进而得出m的值.
点评:此题主要考查了二次函数与反比例函数的综合应用以及全等三角形的判定与性质等知识,利用图象上点的坐标性质得出是解题关键.