精英家教网 > 初中数学 > 题目详情

【题目】如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE和矩形DCFE),原材料刚好全部用完,设窗户边框AB长度为x米,窗户总面积为S平方米(注:窗户边框粗细忽略不计).

1)求Sx之间的函数关系式;

2)若窗户边框AB的长度不少于2米,且边框AB的长度小于BC的长度,求此时窗户总面积S的最大值和最小值.

【答案】1S=﹣x2+9x;(2)窗户总面积S的最大值是m2、最小值是12m2

【解析】

1)根据题意和图形可以求得Sx的函数表达式;

2)根据题意可以得到关于x的不等式,然后根据(1)中的函数解析式和二次函数的性质可以解答本题.

1)由题意可得,

Sx=﹣x2+9x

Sx的函数表达式是S=﹣x2+9x

2)由题意可得,

2≤x

解得,2≤x3.6

S=﹣x2+9x2≤x3.6

x=3时,S取得最大值,此时S

x2时,S取得最小值,此时S12

答:窗户总面积S的最大值是m2、最小值是12m2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10AE=15.(i=1是指坡面的铅直高度BH与水平宽度AH的比)

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1.参考数据:1.4141.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A03),B40),⊙P与三角形各边相切的切点分别为DEF 将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一种商品,童威经市场调查发现:该商品的周销售量(件)是售价(元/件)的一次函数,其售价、周销售量、周销售利润(元)的三组对应值如下表:

售价(元/件)

50

60

80

周销售量(件)

100

80

40

周销售利润(元)

1000

1600

1600

注:周销售利润=周销售量×(售价-进价)

1)①求关于的函数解析式(不要求写出自变量的取值范围)

②该商品进价是_________/件;当售价是________/件时,周销售利润最大,最大利润是__________

2)由于某种原因,该商品进价提高了/,物价部门规定该商品售价不得超过65/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠ACB=90°AC=BC=16.点O在边BC上,以O为圆心,OB为半径的弧经过点AP是弧AB上的一个动点.

(1)求半径OB的长;

(2)如果点P是弧AB的中点,联结PC,求∠PCB的正切值;

(3)如果BA平分∠PBC,延长BPCA交于点D,求线段DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB-1,2)是一次函数与反比例函数

)图象的两个交点,AC⊥x轴于CBD⊥y轴于D

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?

(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PCPD,若△PCA△PDB面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一辆吊车的实物图,图2是其工作示意图,是可以伸缩的起重臂,其转动点离地面的高度.当起重臂长度为,张角118°

1)求操作平台离地面的高度;

2)当张角120°,其它条件不变时,求操作平台升高的高度.

(最后结果精确到0.1,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形边长为分别为线段上一点,且相交于为线段上一点(不与端点重合),为线段上一点(不与端点重合),则的最小值为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案