精英家教网 > 初中数学 > 题目详情
16.已知:如图1,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是平行四边形,证明你的结论.
(2)如图2,请连接四边形ABCD的对角线AC与BD,当AC与BD满足互相垂直条件时,四边形EFGH是矩形;证明你的结论.
(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.

分析 (1)连接BD,根据三角形的中位线定理得到EH∥BD,EH=$\frac{1}{2}$BD,FG∥BD,FG=$\frac{1}{2}$BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;
(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD的对角线满足AC⊥BD的条件时,四边形EFGH是矩形;
(3)菱形的中点四边形是矩形.根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD,EF∥AC,再根据矩形的每一个角都是直角可得∠1=90°,然后根据平行线的性质求出∠3=90°,再根据垂直定义解答.

解答 解:(1)四边形EFGH的形状是平行四边形.理由如下:
如图1,连结BD.
∵E、H分别是AB、AD中点,
∴EH∥BD,EH=$\frac{1}{2}$BD,
同理FG∥BD,FG=$\frac{1}{2}$BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形;

(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:
如图2,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点,
∴EH∥BD,HG∥AC,
∵AC⊥BD,
∴EH⊥HG,
又∵四边形EFGH是平行四边形,
∴平行四边形EFGH是矩形;

(3)菱形的中点四边形是矩形.理由如下:
如图3,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点,
∴EH∥BD,HG∥AC,FG∥BD,EH=$\frac{1}{2}$BD,FG=$\frac{1}{2}$BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形.
∵四边形ABCD是菱形,
∴AC⊥BD,
∵EH∥BD,HG∥AC,
∴EH⊥HG,
∴平行四边形EFGH是矩形.
故答案为:平行四边形;互相垂直.

点评 本题主要考查对三角形的中位线定理,平行四边形的判定,矩形的判定,菱形的性质等知识点的理解和掌握,熟练掌握各定理是解决此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.福州一中初一(1)班的班徽如图1所示,班徽由一个菱形和一个正三角形组合构成,如图2,菱形ABCD中,AB=4,∠A=60°,△DMN为正三角形,如果点M、N分别在菱形的变AB、BC上滑动,且M、N不与A、B、C重合.
(1)证明:不论M、N如何滑动,总有BM=CN;
(2)在M、N滑动的过程中,试探究四边形DMBN的面积是否为定值?如果是,求出这个定值;如果不是,请说明理由.
(3)求△BMN的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.化简:$\frac{{x}^{2}}{{x}^{2}+4x+4}$÷$\frac{x}{x+2}$=(  )
A.xB.$\frac{1}{x+2}$C.$\frac{x}{x+2}$D.x+2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算x5÷(-x)2=x3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在平面直角坐标系中将△ABC绕点C(0,-1)旋转180°得到△A1B1C1,设点A1的坐标为(m,n),则点A的坐标为(  )
A.(-m,-n)B.(-m,-n-2)C.(-m,-n-1)D.(-m,-n+1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知四边形ABCD为正方形,AB=2$\sqrt{2}$,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;
(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.化简:$\frac{{a}^{2}}{a-1}$-$\frac{1-2a}{1-a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,菱形ABCD中,AB=5,BD=6,则菱形的高为(  )
A.$\frac{12}{5}$B.$\frac{24}{5}$C.12D.24

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算$\sqrt{12}$-$\sqrt{\frac{1}{3}}$的结果是$\frac{5\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案