【题目】已知二次函数y=ax2+bx+c的图象经过A(﹣1,0),B(3,0),C(0,﹣3)三点,求这个二次函数的解析式.
科目:初中数学 来源: 题型:
【题目】一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是( )
A.1.5cm
B.7.5cm
C.1.5cm或7.5cm
D.3cm或15cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一副三角板ABE与ACD.
(1)将两个三角板如图(1)放置,连结BD,计算∠1+∠2= .
(2)将图(1)中的三角板BAE绕点A顺时针旋转一个锐角α.
①当α= 时,AB∥CD,如图(2)并计算α+∠1+∠2= .
②当α= 45°时,如图(3),计算α+∠1+∠2= .
③在旋转的过程中,当B点在直线CD的上方时,如图(4), α、∠1、∠2间的数量关系是否会发生变化,为什么?
④当B点运动到直线CD的下方时,如图(5),α(∠CAE)、∠1、∠2间的数量关系是否会发生变化,试说明你的结论?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F为BE的中点,连结DF,CF.
(1)如图①,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系.
(2)如图②,在(1)的条件下将△ADE绕点A顺时针旋转45°,请你判断此时(1)中的结论是否仍然成立,并证明你的判断.
(3)如图③,在(1)的条件下将△ADE绕点A顺时针旋转90°,若AD=1,AC=2,求此时线段CF的长(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=x2﹣2x+k与x轴交于点A、B两点,与y轴交于点C(0,﹣3)(图2,图3为解答备用图).
(1)k= ,点A的坐标为 ,点B的坐标为 ;
(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com