精英家教网 > 初中数学 > 题目详情
13.已知a2+b2-6a+4b+13=0,求[(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b)]÷($\frac{1}{3}$b)的值.

分析 首先根据a2+b2-6a+4b+13=0,可得(a-3)2+(b+2)2=0,据此求出a、b的值各是多少;然后去括号,合并同类项,将代数式[(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b)]÷($\frac{1}{3}$b)化为最简式,再把a、b的值代入即可.

解答 解:∵a2+b2-6a+4b+13=0,
∴(a-3)2+(b+2)2=0,
∴a-3=0,b+2=0,
解得a=3,b=-2,
∴[(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b)]÷($\frac{1}{3}$b)
=[4a2+4ab+b2-2a2-2ab+ab+b2-2a2+8b2]÷($\frac{1}{3}$b)
=[3ab+10b2]÷($\frac{1}{3}$b)
=9a+30b
=9×3+30×(-2)
=27-60
=-33.

点评 此题考查了配方法的应用,整式的混合运算-化简求值,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升15m,水面CD的宽是10m.
(1)在如图所示的直角坐标系下,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发必须经过此桥开往乙地,已知甲地距此桥480km.货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位距桥拱最高点3m时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
(3)当货车接到紧急通知的同时,此桥上游40km处有一船只也接到该通知,此船正以每小时20km的最大速度顺水行驶而来,不知此船能否顺利通过此桥?请说明理由.(已知船的顶部距水面有3.5m高,船体上、下宽均为4m).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知长方形的长为a,宽为2,两个半圆的直径都为2,用含a的式子表示出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为$\sum_{n=1}^{100}$n,这里“$\sum{\;}$”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为$\sum_{n=1}^{50}{\;}$(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为$\sum_{n=1}^{10}{\;}$n3.    通过对上以材料的阅读,请解答下列问题.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为$\sum_{n=1}^{50}2n$;
(2)计算$\sum_{n=2}^{40}$($\frac{1}{2}$n-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,小明沿画在地面上的四边形ABCD的边逆时针走一圈回到原地.
(1)小明一共旋转的度数是360°;
(2)请在图中标出小明在每个顶点处转过的角度;
(3)小明所转过的角度的总和可以用式子表示为4×180°-(4-2)•180°;
(4)如果顺时针走一圈呢?如果小明沿五边形、六边形、n边形的边走一圈呢?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知一元二次不等式ax2+bx+6>0的解集为-2<x<3,求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.观察下列等式:
①$\frac{1}{1×2}$=1-$\frac{1}{2}$,②$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,③$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$.
将以上三个等式两边分别相加,得
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)请写出第④个式子$\frac{1}{4×5}$=$\frac{1}{4}-\frac{1}{5}$
(2)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
(3)探究并计算:$\frac{1}{2×4}$+$\frac{1}{4×6}$+$\frac{1}{6×8}$+…+$\frac{1}{100×102}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.画出函数y=2x+4的图象,利用图象:
(1)求方程2x+4=0的解:
(2)求不等式2x+4>0的解集:
(3)若-2≤y≤5,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知直线l与直线l外一点P,求作:过点P且垂直于直线l的垂线a(尺规作图).
现给出一种作法,如下:
步骤一:在直线l外取一点E,以点P为圆心,以线段PE为半径画弧,交直线l于点M,N;
步骤二:分别以点M、N为圆心,大于$\frac{1}{2}$线段MN为半径画弧,过两弧的交点的直线a就是所求作的垂线.
(1)按上述操作步骤,请成功作出过点P且垂直于直线l的垂线a.(符合要求的一种图形),并说明理由.
(2)从你作图的过程中,思考要保证这种作法顺利作出,线段PE应该满足什么条件?
(3)为了避免这种情况产生,小明说只要在直线l上取点E好了,并给出了画法,画法对吗?请说明理由.
(作法:在直线l上取两点B、D,以P为圆心,以PD 为半径画圆交直线l于点E,以P为圆心,以PB 为半径画圆交直线l于点F,其中较小圆分别交PB,PF于点M、N,连接E、N和D、M,EN和MD相交于点H,则PH就是所求的垂线.)
(4)请在直线l上取点E,用直尺和圆规过点P且垂直于直线l的垂线a(与小明不同的方法,并要求尽可能简单).

查看答案和解析>>

同步练习册答案