精英家教网 > 初中数学 > 题目详情
若两个数的平方和为637,最大公约数与最小公倍数的和为49,则这两个数是
14,2
14,2
分析:首先得出最大公约数与最小公倍数,假设出这两个数为a=7m与b=7n,得出7m×7n=7×42,进而得出mn的值,以及a,b的值,得出所求.
解答:解:∵49=7×7,
∴所求两数的最大公约数为7,最小公倍数为42.
设a=7m,b=7n,(m<n),其中(m,n)=1.
由ab=(a,b)•[a,b].
∴7m•7n=7×42,
故mn=6.又(m,n)=1,
∴m=2,n=3,
故a=14,b=21.
经检验,142+212=637.
∴这两个数为14,21.
故答案为:14,2.
点评:此题主要考查了最大公约数与最小公倍数,利用ab=(a,b)•[a,b]进行求解是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

若两个数的平方和为637,最大公约数与最小公倍数的和为49,则这两个数是______.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省温州中学自主招生考试数学试卷(A卷)(解析版) 题型:解答题

黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:
(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;
(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;
(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.

查看答案和解析>>

同步练习册答案