精英家教网 > 初中数学 > 题目详情

若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线数学公式为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
数学公式且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
数学公式
又∵抛物线y=ax2+bx+c(a≠0)的对称轴为数学公式
∴直线数学公式为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线数学公式为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.

解:(1)结论:自变量取x1,x2时函数值相等.
证明:∵M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c上不同的两点,
由题意得且x1≠x2
①-②,得y1-y2=a(x12-x22)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].
∵直线是抛物线y=ax2+bx+c(a≠0)的对称轴,


∴y1-y2=(x1-x2)[a(x1+x2)+b]=0,即y1=y2

(2)∵二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,
∴由阅读材料可知二次函数y=x2+bx-1的对称轴为直线
,b=-2011.
∴二次函数的解析式为y=x2-2011x-1.

由(1)知,当x=2012的函数值与x=-1时的函数值相等.
∵当x=-1时的函数值为(-1)2-2011×(-1)-1=2011,
∴当x=2012时的函数值为2011.
分析:(1)由题意得出且x1≠x2,再由直线的对称轴得出结论:自变量取x1,x2时函数值相等.
(2)由题意求得b,得出二次函数的解析式为y=x2-2011x-1.再由(1)得,当x=2012时的函数值为2011.
点评:本题是一道阅读题,考查了二次函数的性质和图象上点的特点,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:
x0=m        …(3)
y0=2m-1  …(4)

当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是
 
,其中运用的公式是
 
.由(3)、(4)得到(5)所用的数学方法是
 

②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下面材料:
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
x1+x2
2
为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
b
2a

∴直线x=
x1+x2
2
为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
x1+x2
2
为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请阅读下面材料:
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
x1+x2
2
为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
y0=a
x21
+bx1+c①
y0=a
x22
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
b
2a

∴直线x=
x1+x2
2
为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
x1+x2
2
为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.

查看答案和解析>>

同步练习册答案