精英家教网 > 初中数学 > 题目详情
精英家教网正方形ABCD的边长为1,E、F两点分别位于BC、CD上,DF=m,BE=n,∠EAF=45°,△EFC的内切圆的半径为r.
(1)证明:EF=m+n;
(2)证明:(m+1)(n+1)=2;
(3)若m<n,r=
16
求m、n的值.
分析:(1)作出辅助线,证出△AGB≌△AFD,根据全等三角形的性质求出AG=AF,∠GAB=∠FAD,再进一步证出
再证出△EAG≌△EAF,得到EG=EF,然后即可求出EF的长.
(2)找到Rt△FEC,将各边用含m的代数式表示,利用勾股定理解答.
(3)根据三角形的面积相等列出关于m、n的等式,结合(2)的结论,即可求出m、n的值.
解答:精英家教网(1)证明:延长CB至G,使BG=DF,连接AG.
在△AGB和△AFD中,
∵AB=AD,∠ABG=∠ADF,BG=DF,
∴△AGB≌△AFD,
∴AG=AF,∠GAB=∠FAD,
又∵∠EAF=45°,
∴∠BAE+∠FAD=∠BAE+∠GAB=45°,
∴∠EAG=∠EAF=45°,
在△EAG和△EAF中,
∵AE=AE,∠EAG=∠EAF,AG=AF,
∴△EAG≌△EAF,
∴EG=EF,
又∵EG=EB+BG=BE+DF=n+m,
∴EF=m+n.

(2)在Rt△FEC中,
∵EF2=CE2+CF2
∴(m+n)2=(1-n)2+(1-m)2
展开整理得mn+m+n=1,
两边同加上1,左边因式分解得(m+1)(n+1)=2.

(3)∵S△EFC=
1
2
(CE+CF+EF)r,
∴当r=
1
6
时得,
1
2
(1-m)(1-n)=
1
2
[(1-m)+(1-n)+(m+n)]×
1
6

整理得(1-m)(1-n)=
1
3

结合第2问结论:
(m+1)(n+1)=2消元得m=
1
2
,n=
1
3
;m=
1
3
,n=
1
2

∵m<n,
∴m=
1
3
,n=
1
2
点评:此题是一道圆、正方形和三角形相结合的题目,综合性较强.
(1)解答此小题时,要运用全等三角形的知识;
(2)运用勾股定理是解答此题的关键;
(3)根据三角形的面积不变列出等式是常用的解答此类问题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
如图所示,正方形ABCD的边长为7,AE=BF=CG=DH=3,甲、乙两只蚂蚁同时从A点出发,甲蚂蚁以每秒
3
5
的速度沿路线AE→EF→FG→GH→HE→EB→BC→CD→DA循环爬行;乙蚂蚁以每秒
4
5
的速度沿路线AH→HG→GF→FE→EH→HD→DC→CB→BA循环爬行.那么出发后两只蚂蚁在第
 
s第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3
2
,PE⊥PB交CD于点E,则PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,P是BC上一动点,QP⊥AP交DC于Q,设PB=x,△ADQ的面积为y.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积;若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标;
(3)画出这个函数的图象;
(4)点P是否存在这样的位置,使△APB的面积是△ADQ的面积的
23
?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为6,点M在边DC上,M,N两点关于对角线AC对称,若DM=2,则tan∠ADN=
3
2
3
2

查看答案和解析>>

同步练习册答案