精英家教网 > 初中数学 > 题目详情
如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知点B的坐精英家教网标是(1,1),
(1)求直线AB和抛物线所表示的函数解析式;
(2)如果在第一象限,抛物线上有一点D,使得S△OAD=S△OBC,求这时D点坐标.
分析:(1)将A、B两点坐标代入y=kx+b中,可求直线解析式,将B点坐标代入y=ax2中,可求抛物线解析式;
(2)联立直线与抛物线解析式,可求C点坐标,用S△OBC=S△OCA-S△OBA,可求△OAD的面积,又已知OA,可求D点的纵坐标.
解答:解:(1)设直线AB所表示的函数解析式为y=kx+b,
∵它过点A(2,0)和点B(1,1),
2k+b=0
k+b=1

解得
k=-1
b=2

∴直线AB所表示的函数解析式为y=-x+2,
∵抛物线y=ax2过点B(1,1),
∴a×12=1,
解得a=1,
∴抛物线所表示的函数解析式为y=x2

(2)解方程组
y=-x+2
y=x2

x1=-2
y1=4
x2=1
y2=1

∴C点坐标为(-2,4);
又B点坐标为(1,1),A点坐标为(2,0),
∴OA=2,
S△OAC=
1
2
×2×4=4

S△OAB=
1
2
×2×1=1

∴S△OBC=S△OAC-S△OAB=4-1=3,
设D点的纵坐标为yD
则S△OAD=
1
2
×OA×|yD|=
1
2
×2×yD=3,
把y=3代入y=x2
x=±
3

又∵点D在第一象限,
xD=
3

∴D点坐标为(
3
,3).
点评:本题考查了一次函数、二次函数解析式的求法,两个函数图象交点坐标的求法,以及坐标系中面积的表示方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).
(1)求直线和抛物线所表示的函数表达式;
(2)在抛物线上是否存在一点D,使得S△OAD=S△OBC?若不存在,说明理由;若存在,请求出点D的坐标,与同伴交流.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB过x轴上的点B(4,0),且与抛物线y=ax2交于A、C两点,已知A(2,2).
(1)求直线AB的函数解析式;
(2)求抛物线的函数解析式;
(3)如果抛物线上有点D,使S△OBD=S△OAC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源:2013年湖南省邵阳市中考数学模拟试卷(六)(解析版) 题型:解答题

如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).
(1)求直线和抛物线所表示的函数表达式;
(2)在抛物线上是否存在一点D,使得S△OAD=S△OBC?若不存在,说明理由;若存在,请求出点D的坐标,与同伴交流.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2000•兰州)如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知点B的坐标是(1,1),
(1)求直线AB和抛物线所表示的函数解析式;
(2)如果在第一象限,抛物线上有一点D,使得S△OAD=S△OBC,求这时D点坐标.

查看答案和解析>>

同步练习册答案