【题目】在平面直角坐标系xOy中,对于点P (x,y),若点Q的坐标为(ax+y,x+ay), 其中a为常数,则称点Q是点P的“a级关联点",例如,点P(1,4)的“3级关联点"为Q (3×1+4,1+3×4), 即Q (7,13)。
(1)已知点A (-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1 (3, 3), 求点A1和点B的坐标:
(2)已知点M (m-1, 2m)的“-3级关联点"M位于坐标轴上,求M的坐标
【答案】(1)A1 (5, 1),;(2) (,0)或 (0,-16).
【解析】
(1)根据关联点的定义,结合点的坐标即可得出结论;
(2)先表示出点M(m-1,2m)的“-3级关联点”M′,然后分两种情况求解即可求出M′的坐标.
(1) ∵点A(-2, 6)的“级关联点”是点A,
∴A (,), 即A1 (5, 1).
设点B(x, y),
∵点B的“2级关联点"是B (3, 3),
∴,
解得,即,
(2) ∵点M(m-1, 2m) 的“- 3级关联点”为M (-3 (m-1) +2m, m-1+ (-3) ×2m),即 (-m+3, -5m-1),
当位于x轴上,.m-1-6m= =0解得:,
∴-3 (m-1) +2m= ,
,
当位于y轴上,∴.-3 (m-1) +2m=0,解得: m=3,
∴,.
综上所述,点坐标是 (,0)或 (0,-16).
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.将∠EDF以点D为旋转中心旋转,其两边DE′,DF′分别与直线AB,BC相交于点G,P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC、△DCE均为等边三角形,当B、C、E三点在同一条直线上时,连接BD、AE交于点F,易证:△ACE≌△BCD.聪明的小明将△DCE绕点C旋转的过程中发现了一些不变的结论,让我们一起开启小明的探索之旅!
(探究一)如图2,当B、C、E三点不在同一条直线上时,小明发现∠BFE的大小没有发生变化,请你帮他求出∠BFE的度数.
(探究二)阅读材料:在平时的练习中,我们曾探究得到这样一个正确的结论:两个全等三角形的对应边上的高相等.例如:如图3,如果△ABC≌△A’B’C’,AD、A’D’分别是△ABC、△A’B’C’的边BC、B’C’上的高,那么容易证明AD=A’D’.小明带着这样的思考又有了新的发现:如图4,若连接CF,则CF平分∠BFE,请你帮他说明理由.
(探究三)在探究二的基础上,小明又进一步研究发现,线段AF、BF、CF之间还存在一定的数量关系,请你写出它们之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本为________,样本容量为_______;
(2)在频数分布表中,a=______,b=______,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个四位数,记千位数字与百位数字之和为x,十位数字与个位数字之和为y,如果x=y,那么称这个四位数为“平衡数”.
(1)最小的“平衡数”为 ;四位数A与4738之和为最大的“平衡数”,则A的值为_______;
(2)一个四位“平衡数”M,它的个位数字是千位数字a的3倍,百位数字b与十位数字之和为8,求出所有满足条件的“平衡数”M的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com