精英家教网 > 初中数学 > 题目详情
已知二次函数图象的顶点为D(1,-4),且经过点A(-1,0).
(1)求该二次函数的关系式;
(2)设抛物线与x轴的另一个交点为B,与y轴的交点为C,试判断△BCD的形状,并说明理由;
(3)设经过B、C、D三点的圆的圆心为O′,设⊙O′与x轴的另一个交点为E,求线段BE的长.
分析:(1)由二次函数的顶点坐标以及A点坐标,利用顶点式求出二次函数解析式即可;
(2)首先求出二次函数与坐标轴交点坐标,进而得出CD,BD,BC的长度,进而得出答案;
(3)利用直角三角形的性质得出四边形OMDE是矩形,进而求出即可.
解答:解:(1)∵二次函数图象的顶点为D(1,-4),且经过点A(-1,0),
∴二次函数解析式为:y=a(x-1) 2-4,
将A(-1,0)代入解析式得:0=a(-1-1) 2-4,
∴a=1,
∴二次函数的关系式为:y=(x-1) 2-4;

(2)∵抛物线与x轴的另一个交点为B,与y轴的交点为C,
∴0=(x-1) 2-4;
x1=-1,x2=3,
∴点B坐标为:(3,0),
y=(0-1) 2-4=-3,
∴点C坐标为:(0,-3),
过点D作DM⊥y轴,DN⊥BN,BN∥y轴,
∴CD=
MD2+CM2
=
2

BD=
BN2+DN2
=
42+22
=2
5

BC=
OB2+CO2
=3
2

∴CD2+BC2=BD2
∴△BCD是直角三角形;

(3)连接ED,
∵△BCD是直角三角形.
∴BD是⊙O′的直径,
∴∠DEB=90°,
∵∠MOE=90°,∠OMD=90°,
∴四边形OMDE是矩形,
∴MD=OE=1,
∴E点坐标为:(1,0).
∴BE=2.
点评:此题主要考查了顶点式求二次函数解析式以及矩形判定方法和直角三角形判定方法,根据已知得出CD,BD,BC的长度是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点为原点,直线y=
12
x+4的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.
(1)求B点的坐标与这个二次函数的解析式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设该线段PD的长为h,点P的横坐标为t,求h与t之间的函数解析式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△B精英家教网OC相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数图象的顶点为(-2,5),图象与y轴交点A的坐标为(0,3).
(1)求该函数的解析式;
(2)求该二次函数图象与x轴交点B、C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数图象的顶点为P(1,-4),且与x轴的一个交点坐标A(3,0),
(1)求该二次函数的解析式(化为一般形式);
(2)若二次函数图象上有两点(2,y1),(3,y2),试判断函数值y1、y2的大小;
(3)请问:如何平移该抛物线(写出一种简单情况即可),使图象经过原点?并写出此时抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图已知二次函数图象的顶点为原点,直线y=
12
x+4
的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案