精英家教网 > 初中数学 > 题目详情
如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

【答案】分析:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;
(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;
(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.
解答:解:(1)∵分别交y轴、x轴于A、B两点,
∴A、B点的坐标为:A(0,2),B(4,0)…(1分)
将x=0,y=2代入y=-x2+bx+c得c=2…(2分)
将x=4,y=0代入y=-x2+bx+c得0=-16+4b+2,解得b=
∴抛物线解析式为:y=-x2+x+2…(3分)

(2)如答图1,设MN交x轴于点E,
则E(t,0),BE=4-t.
∵tan∠ABO===
∴ME=BE•tan∠ABO=(4-t)×=2-t.
又N点在抛物线上,且xN=t,∴yN=-t2+t+2,
∴MN=yN-ME=-t2+t+2-(2-t)=-t2+4t…(5分)
∴当t=2时,MN有最大值4…(6分)

(3)由(2)可知,A(0,2),M(2,1),N(2,5).
以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.…(7分)
(i)当D在y轴上时,设D的坐标为(0,a)
由AD=MN,得|a-2|=4,解得a1=6,a2=-2,
从而D为(0,6)或D(0,-2)…(8分)
(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,
易得D1N的方程为y=x+6,D2M的方程为y=x-2,
由两方程联立解得D为(4,4)…(9分)
故所求的D点坐标为(0,6),(0,-2)或(4,4)…(10分)
点评:本题是二次函数综合题,考查了抛物线上点的坐标特征、二次函数的极值、待定系数法求函数解析式、平行四边形等重要知识点.难点在于第(3)问,点D的可能位置有三种情形,解题时容易遗漏而导致失分.作为中考压轴题,本题有一定的难度,解题时比较容易下手,区分度稍低.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一次函数y=x-5分别交x轴、y轴于A、B两点,二次函数y=-x2+bx+c的图象经过A、B两点.
(1)求二次函数的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(E点位于D点上方),DE=
2

①若点D的横坐标为t,用含t的代数式表示D、E的坐标;
②抛物线上是否存在点F,使点F与点D关于x轴对称,如果存在,请求出△AEF的面积;如果不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙教版九年级(上)第一次月考数学试卷(六)(解析版) 题型:解答题

如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源:2007年上海市金山区中考数学二模试卷(解析版) 题型:解答题

如图,一次函数y=x-5分别交x轴、y轴于A、B两点,二次函数y=-x2+bx+c的图象经过A、B两点.
(1)求二次函数的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(E点位于D点上方),DE=
①若点D的横坐标为t,用含t的代数式表示D、E的坐标;
②抛物线上是否存在点F,使点F与点D关于x轴对称,如果存在,请求出△AEF的面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(湖南株洲卷)数学(解析版) 题型:解答题

如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

 

查看答案和解析>>

同步练习册答案