精英家教网 > 初中数学 > 题目详情

【题目】七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为______元.

1元硬币

5角硬币

每枚厚度(单位:mm)

1.8

1.7

每枚质量(单位:g)

6.1

6.0

【答案】9

【解析】

首先设5角的硬币x枚,1元硬币y枚,根据用尺量出它们的总厚度为22.6mm可得方程1.7x+1.8y=22.6,又用天平称出总质量为78.5g可得方程6x+6.1y=78.5,两立两个方程,解方程组即可.

5角的硬币x枚,1元硬币y枚,由题意得:

解得:x=8,y=5

8×0.5+5×1=9()

故答案为:9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.

(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.

(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为 ,BD是⊙O的切线,D为切点,过圆上一点C作BD的垂线,垂足为B,BC=3,点A是优弧CD的中点,则sin∠A的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E= ,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于xy的方程组给出下列结论:①是方程组的解;②无论a取何值,xy的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4-a的解;④xy都为自然数的解有4.其中正确的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,为厉行节能减排,倡导绿色出行,某公司拟在我市甲、乙两个街道社区投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型.

成本单价 (单位:元)

投放数量

(单位:辆)

总价(单位:元)

A型

x

50

50x

B型

x+10

50

   

成本合计(单位:元)

7500

问题1:看表填空

如图2所示,本次试点投放的A、B型“小黄车”共有   辆;用含有x的式子表示出B型自行车的成本总价为   

问题2:自行车单价

试求A、B两型自行车的单价各是多少?

问题3:投放数量

现在该公司采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(1, ),点B(2,0),P为线段OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积最大值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列判断错误的是( )

A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD

C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3, ).
(1)求反比例函数的表达式和m的值;
(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.

查看答案和解析>>

同步练习册答案