精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为
 
,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为
 

(2)A,B的中点是点C,则sin∠CMB=
 

(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一精英家教网点N(a,b),a,b满足a2-a+m=0,b2-b+m=0,则点N的坐标为
 
分析:(1)抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,即y=x2+6x+5上的点关于y轴的对称点在函数y=mx2+nx+p上,可以在y=x2+6x+5上取几点,求出它们关于y轴的对称点,利用待定系数就可以求出函数的解析式.
(2)根据抛物线的解析式,可以求出A,B点的坐标,则C的坐标也可以求出.过点C作CD⊥BM,易证,△BCD是等腰直角三角形,在直角△BCD中根据三角函数可以求出CD,在直角△NOC中,根据勾股定理就可以求出MC的长,则sin∠CMB就可以求出.
(3)设过点M(0,5)的直线为y=kx+b,则b=5.则直线的解析式是y=kx+5,与抛物线的解析式组成方程组,解方程组就可以得到N,M两点的坐标,可以得到a,b的关系,从而求出值.
解答:解:(1)y=x2+6x+5的顶点为(-3,-4),
即y=mx2+nx+p的顶点的为(3,-4),
设y=mx2+nx+p=a(x-3)2-4,
y=x2+6x+5与y轴的交点M(0,5),
即y=mx2+nx+p与y轴的交点M(0,5).
即a=1,
所求二次函数为y=x2-6x+5.
猜想:
与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式是y=ax2-bx+c.
精英家教网

(2)过点C作CD⊥BM.
抛物线y=x2-6x+5与x轴的交点A(1,0),B(5,0),与y轴交点M(0,5),AB中点C(3,0).
故△MOB,△BCD是等腰直角三角形,CD=
2
2
BC=
2

在Rt△MOC中,MC=
34

则sin∠CMB=
CD
MC
=
17
17


(3)设过点M(0,5)的直线为y=kx+b,则b=5.
y=kx+5
y=x2-6x+5

解得
x1=0
y1=5

x2=k+6
y2=k2+6k+5

则a=k+6,b=k2+6k+5,
由已知a,b是方程x2-x+m=0的解,故a+b=1.
即(k+6)+(k2+6k+5)=1,
化简k2+7k+10=0,则k1=-2,k2=-5.
点N的坐标是(4,-3)或(1,0).
点评:本题主要考查了关于y轴对称的函数解析式的关系,已知一个函数的解析式,利用-x代替式子中的x,就可以得到函数关于y轴
对称的函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案